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The core Internet protocols were not designed to protect the privacy of content or the iden-

tities of communicating users, thus making censorship and surveillance easy. The same

problem persists at higher level protocols, popular peer-to-peer networks are trivial to

monitor even for an adversary with limited resources. In fact, recent developments sug-

gest that censorship and surveillance of Internet users is becoming more prevalent over

time.

This dissertation describes the design, implementation, and evaluation of two systems

that can bring us towards a future where censorship and surveillance is hard. OneSwarm

is a privacy-preserving data sharing network designed to give users performance com-

parable to the peer-to-peer networks commonly used today but without revealing their

behavior to third party surveillance. Unblock is an overlay network that leverages many

of the same building blocks but is designed to help users circumvent censorship of Internet

services. Common to both systems is the use of existing social trust between participants

to thwart surveillance and censorship respectively. These systems are designed to run on

today’s Internet and require no changes to core Internet infrastructure or protocols. Mea-

surements of the systems in the wild, and simulations of their behavior at scale, show that

they protect user privacy and improve performance over existing alternatives.
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Chapter 1

INTRODUCTION

The core Internet protocols were designed at a time when Internet communication pri-

marily consistent of point-to-point conversations between large servers. Internet usage has

changed dramatically since then. Billions of devices are connected to the Internet, ranging

from super-computers to laptops to light-switches. The usage of the network has changed

as well. Today’s Internet users share text, voice, images, and video; sometimes data is

shared with the entire world, sometimes with a few select friends, and sometimes data is

shared in such a way that the original source or destination of the data would prefer to

stay hidden both from each other and from observers in the network.

This shift in usage has made cloud services popular for communication and data shar-

ing. Users upload their data to a centralized provider who then allows the user to share

and access the data from anywhere. Centralized cloud providers handle everything from

video and photo sharing to data collection from simple devices in the home that report wa-

ter and electricity use. However, using the cloud has its downsides. For example: many

popular providers collect, store, and share vast amounts of data about their users, raising

privacy concerns. Even if we trust the cloud provider with our data, centralization makes

censorship easier, a practical concern in many places around the globe.

Users unwilling to sign their data over to cloud providers can instead use decentralized

peer-to-peer networks for their data sharing. Unfortunately, even peer-to-peer networks

can compromise user privacy. Popular peer-to-peer systems not only leak the source of

data but also which users that subsequently access it. The agents monitoring these net-

works range from researchers trying to better understand network properties [69], to con-

tent providers trawling for copyright infringement [31]. Either way, users are often un-



2

aware to the wealth of information being collected about themselves when they share or

access content over the Internet, independent on whether they use a cloud provider or a

peer-to-peer network.

The distributed and global reach of the Internet makes it useful not only for sharing

personal data but also for news gathering and political organization. However, the free

flow of information is not universally considered a good thing. Governments have shown

a willingness to selectively restrict the content, source, and destination of communication

to advance their social and economic agendas [42, 50]. Simultaneously, network equip-

ment providers have seized the opportunity to profit from censorship by selling network

interception and filtering devices [84]. Internet censorship is a reality for the majority of

Internet users [64, 102].

Censorship is no longer just about disrupting activists in nations with oppressive gov-

ernments. Rather, censorship describes the growing shift of nation-states exerting power

in telecommunications networks to influence commonplace communication. Selectively

cropping content from a person’s daily news feed and their friend’s status updates can

significantly alter the way they perceive the world [10, 18]. By restricting the freedom

of the press, governments can distort views, change facts, and affect public opinion. In-

ternet censorship also allows nations to exert economic pressure [23] by blocking foreign

competitors from entering markets and enabling new forms of protectionism in the multi-

trillion dollar [8] Internet economy.

The prevalence of surveillance and censorship has created a demand for anonymizing

and censorship defeating technologies. Proposals range from a complete redesigns of the

core Internet protocols [56] to more modest commercial solutions involving one-hop prox-

ies [6] and VPN connections [43] designed to hide the true originator of requests while

tunneling traffic to a location where the desired content is not censored. These solutions

have shortcomings, even simple changes to the Internet can take decades to gain foothold

making a complete redesign unlikely to occur soon, and single hop solutions requires the
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user trust the provider to not log user requests.

Building an anonymizing and censorship-resistant network without replacing the ex-

isting network architecture requires an overlay built on top of the existing Internet. Tor [27]

and Freenet [20] are example of existing overlays that are in use today. Tor offer anonymity

by iteratively decrypting requests as they are forwarded through multiple overlay hops.

When the request reach the last hop in the overlay the clear text is visible and is forwarded

to the intended destination on the Internet. This process provides privacy by hiding the

content and original source from the destination service as well as from monitoring agents

in the network which makes censorship harder. Freenet provides privacy by separating the

process of publishing and serving data. Publisher use an algorithm to select a few nodes

that are responsible for storing a specific object. The publisher then push the content into

the overlay through its neighboring nodes, this process is repeated over several hops until

the intended storage node is reached.

Both Tor and Freenet makes it hard for an attacker to determine the source, destination,

and content of messages, but as I show later in this dissertation they offer comparatively

poor performance due to long overlay paths, oversubscription, and transport layer con-

gestion. Good performance is critical for user adoption as even a small increase in latency

cause users to abandon the service [39].

In this dissertation I present the design, implementation, and evaluation of two systems

that are deployable on the Internet today. OneSwarm is a privacy-preserving data sharing

network designed to give users performance comparable to the privacy-revealing peer-to-

peer networks commonly used today but without revealing their behavior to third party

surveillance. Unblock is a overlay network that share many of the same technologies with

OneSwarm, but is designed to circumvent censorship of Internet services.

Common to both OneSwarm and Unblock is the use of existing social trust between

participants to thwart surveillance and censorship respectively. Basing the overlay on links

backed by social trust introduce a set of challenges. First there has to be a way to bootstrap
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new users, both OneSwarm and Unblock allows users to optionally add untrusted links

until a sufficient number of trusted links are added. Second, overlay paths lengths can not

be controlled by the system, instead they are bound to the social network formed by the

participants. To overcome this challenge both systems make aggressive use of multi-path

routing to, in the case of OneSwarm, maximize throughput, and in the case of Unblock,

minimize latency. Together with new transport layer techniques both OneSwarm and Un-

block improve performance over existing systems.

1.1 OneSwarm: Privacy preserving peer-to-peer data sharing

Most Internet users are both content consumers and content producers, with their data

shared with others through centralized data sharing sites such as Facebook, YouTube, and

Flickr. However, most popular web sites collect, store, and share vast amounts of personal

information about their users, despite users finding such behavior objectionable [95].

Peer-to-peer systems potentially provide an alternative for achieving scalable file shar-

ing without a trusted web site as mediator. However, the peer-to-peer systems available

today offer users an unattractive choice between privacy and reasonable performance. On

one side, protocols like BitTorrent are high performance and robust, but participants are

easily monitored by anyone who cares to look [70, 71, 86]. On the other, anonymization

networks (e.g., Tor and Freenet) emphasize privacy, but offer comparatively poor perfor-

mance.

With OneSwarm, I explore a new design point in this tradeoff between privacy and

performance. The goal is to provide make systematic monitoring much more challenging

than before, while maintaining good enough performance that users turn on privacy by

default for all of their data sharing. Central to the design is a notion of flexible privacy.

OneSwarm does not adopt a universal guarantee regarding information exposure; each

individual user is free to control the tradeoff between performance and privacy by manag-

ing trust in peers as well as sources of peers. User can bootstrap overlay connectivity by
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manually approving only trusted friends, automatically importing peers by piggy-backing

on existing social networks, and/or chose to be bootstrapped by a matching service that

provides a random set of untrusted peers.

Restricting sharing to only trusted contacts provides few avenues of attack for would-

be monitoring agents, but it can be an obstacle to early adopters who by definition have

no one in the system they trust. Alternatively, untrusted peers improve performance and

availability by increasing redundancy, but widen the attack surface.

While stronger restrictions on user behavior permit stronger statements of system-wide

security properties, deployment experience has shown that support for divergent, individ-

ual notions of privacy is essential for adoption. In the year since its release, OneSwarm has

been downloaded hundreds of thousands of times, translated to more than half a dozen

languages, and it is in active daily use by thousands of people world-wide.

1.2 Unblock: Blocking-resistant network services

Unblock is a blocking-resistant overlay network that allows users to reroute Internet traf-

fic to avoid censorship, as well as to directly host blocking-resistant services. Users of the

system explicitly connect to friends who they trust to conceal their identity. Friends form

encrypted links with each other, forming a global social network. Unblock routes Internet

traffic over these links to a region where the desired content is not censored. Routing, cou-

pled with security mechanisms to prevent overlay disruption, hides overlay participants

from the censor.

Unblock improves social routing performance by introducing shortcut links, untrusted

connections that risk exposing a small set of users to an adversary in order to dramatically

lower the median latency of the system as a whole. The system also enables each user

to discover multiple paths to exit nodes for better path diversity and higher bandwidth.

Users communicate using a hybrid transport protocol, consisting of a SSL control plane

and an encrypted UDP data plane. The transport layer protocol use per-hop congestion



6

control to minimize multi-hop queuing and to improve aggregate network utilization, and

adaptive use of multiple paths to minimize latency or maximize throughput.

Measurements of the Unblock client show that its design provides better performance

than competing solutions. Simulations of the system at scale find that shortcut links im-

prove connectivity without introducing significant vulnerability or network hot spots.

1.3 Thesis and Contributions

The goal of this dissertation is to support the following thesis: By building overlay networks

based on social trust we can improve security and performance relative to existing solutions.

The fundamental contributions presented in this dissertation include:

• The design, implementation, and evaluation of a file distribution protocol for

social network overlays. I have designed, implemented, and evaluated OneSwarm,

a file sharing protocol designed for data sharing in a social overlay network. The file

distribution protocol gives the user complete control over their data, and allows them

to share data only with friends and family, or with everyone, while still preserving

their privacy. I have evaluated the protocol both in the wild, and in a simulator to

evaluate the system at large scale. The results show that social network overlays can

support a file sharing workload while both protecting user privacy and maintaining

performance.

• A software artifact, OneSwarm. The OneSwarm client is used by thousands of ac-

tive users each week for communication over a social network overlay. The software

binary as well as related source code is available to the public.

• The design, implementation, and evaluation of a censorship circumventing sys-

tem based on social network overlays. I have designed, implemented, and evalu-

ated Unblock, a protocol designed to help user circumvent Internet censorship. Un-

block allows users to access Internet services that otherwise would be unavailable
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due to censorship. Through measurements of the implementation and simulations

of the system as large scale I show that social network overlays can get around a cen-

sor while at the same time improving performance relative to public overlays based

on onion routing.

1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides the reader

with a background of the area as well as motivation. The contributions are described in

Chapter 3 and Chapter 4. In Chapter 5 I discuss related work followed by conclusions and

future work in Chapter 6.
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Chapter 2

BACKGROUND AND MOTIVATION

In this chapter I introduce the terminology used in the remainder of this dissertation. I

then the present various methods used by governments and private entities to monitoring

and filtering Internet traffic, tools designed to aid users that wish to avoid it, and issues

with those tools. Last I describe the methods I use to improve on them.

2.1 Surveillance and censorship

The core Internet protocols, such as TCP/IP, were not designed to protect the content and

authenticity of communication or to hide the participants. Rather it assumed that it was

sufficient to do that on top of TCP. However, merely the existence of communication be-

tween two endpoints can reveal information or lead to censorship where select commu-

nication is altered or blocked. Protecting against this was not a priority as in the early

days of the Internet there was no infrastructure around to monitor and analyze the traffic.

Things have changed since then. In Europe Internet surveillance is mandated by the Data

Retention Directive. It requires phone companies and Internet Service Providers (ISPs) to

store information about emails, text messages, phone calls, and search engine traffic for 24

months [67]. While the corresponding US law is less draconian, reports about warrantless

wiretapping by the NSA in collusion with ISPs suggest that the extent of the surveillance is

larger than what is officially stated [35]. The situation in non-democratic countries is even

worse with monitoring and filtering all Internet traffic being commonplace [15, 13].
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Figure 2.1: The “free” model. Created by Oliver Widder [100]. License: CC BY-SA 3.0

2.2 Surveillance and censorship in the wild

Governments are not the only entities interested in monitoring and censoring Internet

users. Private companies collect user data to improve their bottom line. In this section

I will first look at how private companies track users. I will then look at how governments

monitor Internet traffic with the goal of preventing users from accessing content deemed

undesirable.

2.2.1 Web tracking

“If you’re not paying for something, you’re not the customer;

you’re the product being sold.” –Andrew Lewis

The business model of many Internet services is based on the “free” model; users do not

need to pay anything to access the service, instead the service will show advertisements.

The advertisements are provided by advertising networks. By serving ads on a large num-
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ber of webpages it is possible for these networks to track user behavior across multiple

services [79]. The services share information about users to increase their ad revenue, in-

creasing the amount of data the ad networks knows about each user. With this tracking

it is possible to, over time, build up a detailed user profile for each visitor. The profiles

contain information such as demographics, geographical location, hobbies and interests,

and items that the user might be interested in buying [11]. These profiles are then bundled

up and sold [5].

The more a service knows about a person, the better it can target advertising. In Europe

people have the right to request all information a service have collected on them. When re-

questing information about their profile from Facebook individuals have received dossiers

hundreds of pages long, sometimes including information they had deleted [83].

2.2.2 Censorship

Most countries around the world enforce some type of Internet censorship [42, 102]. In this

section I will give a brief introduction to the methods used. Figure 2.2 shows an overview

of how a censor can block web requests.

DNS name filtering

DNS name filtering is one of the simplest forms of censorship. It requires no modifica-

tion to the core Internet infrastructure and only simple policy changes to DNS servers.

The censor only monitors DNS queries as they arrive at the DNS server, there is no need

to all monitor traffic flowing through the network. In northern Europe DNS filtering is

voluntary and implemented by the ISPs. The government supplies a blacklist of domain

names and the ISPs configure their DNS servers to either drop requests for those domains,

or to respond with a government site warning the user. The major criticism against this

approach is that it is incomplete, in that it only contains the domains discovered by the

government, ineffective in that it is easy to get around for determined users, blunt in that
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DNS Server

1. DNS name

wikipedia.org

2. Destination IP

3. Content

Client

Figure 2.2: An overview of web request blocking. A censor can block requests based on
domain name, destination IP address, or because of prohibited content in the request or
response payload.

the filter blocks entire domains and not just the pages with prohibited content, that the fil-

ter grows to include innocuous sites, and that it gives power to governments to shut down

political speech [88].

Getting around DNS filtering requires little skill and no additional software. Instead

of instructing the operating system to use the filtering DNS server provided by the ISP,

the user can connect to a public DNS server that does not implement the filter. The most

popular public free DNS servers are run by Google (8.8.8.8) and OpenDNS (208.67.222.222).

Because it is so easy to get around, DNS based filtering is at best preventing users from

accidentally accessing prohibited content.
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Destination IP filtering

Destination IP filtering requires more extensive changes to the Internet infrastructure than

DNS based filtering. Filtering based on IP address makes circumvention more difficult as

it has the ability to prevent access to peer-to-peer networks and to anti-censorship tools

such as Tor. IP filtering is more costly than DNS filtering in that it requires the censor to

monitor the packet headers of all network traffic. The filter can either be installed at the

country border, with the advantage that only the few routers with cross country links need

to implement the policy, or it can be pushed down into the network closer to the end user.

Pushing the filter closer to end users means that domestic traffic can be filtered as well,

but the downside is that a larger number of routers needs to be updated with the filtering

policy [88].

Content filtering (deep packet inspection)

Deep packet inspection (DPI) means that the censor examines the entire packet payload as

it passes through the network. From a censor’s point of view DPI has a couple advantages.

It can be dynamic: for example it can filter all traffic containing certain words no matter the

source or protocol. It can be arbitrarily fine-grained, instead of blocking entire web sites

it can block individual pages, parts of pages, or modify pages by removing prohibited

content. End-to-end encryption such as TLS prevents inspections of packet payloads so

in those cases the filtering policy can only be based packet headers and TLS handshaking

information that is sent in the clear. Even with this limitation DPI has been used to finger-

print encrypted protocols, such as Tor, based on unique TLS handshake properties [26].

The main disadvantage with DPI is that it requires specialized hardware to run at high

speed. To decrease hardware costs a censor can use a hybrid IP filter / DPI solution.

Packets to network addresses previously flagged as suspicious are redirected through DPI,

while the remaining network traffic is forwarded without inspection [88].
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2.2.3 Case study: Australia - Wikileaks blocked for publishing list of blocked websites

Like many western countries, Australia requires ISPs to censor pages and domains con-

taining child abuse. However, in Australia the list of censored pages has grown over time

to include items not originally intended to be censored such as poker portals and pages

about euthanasia [104] . In March of 2009, Wikileaks got hold of the block list and pub-

lished a blog post about how censorship in Australia quietly expanded in scope. The post

also contained the entire list of censored pages. Shortly after the blog post Australia added

the wikileaks webpage to the block list [57] making the page unreachable to novice Internet

users in Australia. However, after popular uproar the Australian government backtracked

and in April 2010 it reexamined the censored pages and found that wikileaks did not con-

tain any prohibited material. While sites with a large following can exert enough popular

pressure to make the government backtrack this is rarely the case for small sites. Censoring

the list of censored pages exaggerates the problem as site owners might not even be aware

that their site is censored.

This example demonstrates the potential pitfalls of Internet censorship – once the in-

frastructure is in place it is easy quietly expand the scope. In addition, just as with DNS

filtering, highly motivated and technically savvy individuals can get around the type of

censorship deployed, something I will cover next.

2.3 Circumventing surveillance and censorship

The most popular method for protecting user data from surveillance is to use end-to-end

encryption such as SSL/TLS, or HTTPS when used over the web. These techniques protect

the data from monitoring in the middle of the network, ensure that the content is not

tampered with, and that the other party indeed is who they say they are 1. Importantly,

they do not hide the identities communicating, both participants know who the other party

is, and an attacker in the middle of the network knows who is communicating with whom.

1 This is only true if the certificate chain is trustworthy.
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One way to hide the fact that you are communicating with a particular host is to use

an indirection service. Instead of sending traffic directly to the destination the traffic is

sent to the service, the service then scrubs off the source information and forwards the

traffic as if the service itself was the source effectively hiding the original source is hidden

from the destination. An early indirection service was anonymizer.com but now there are

a large number of commercial proxy and VPN solutions available. This solution is partial

because the users must put all their trust in the anonymizing service; there is no way to

ensure that the service is not saving information about user traffic. In some ways users are

even worse of now, before the only information leaked was the IP address2. By paying the

anonymizing service with credit card the user not only provides them with all her Internet

traffic, but also with her name and address.

2.3.1 Tor

Tor aims to correct the shortcomings of the commercial anonymization services. Tor, short

for The Onion Router, provides anonymity guarantees by way of onion routing [27]. Fig-

ure 2.3 shows an overview of the Tor ecosystem. Tor requires users to install a small client

program and configure it as a SOCKS proxy. Upon startup the Tor client contacts a Tor di-

rectory server to receive a list of Tor relays and their corresponding IP addresses. The client

then selects three relays based on criteria such as exit node policy, bandwidth, uptime, and

geographic location [65, 30]. Once the relays are selected the client initiates a circuit setup

where it in turn contacts each replica in a telescopic fashion. This occurs at each hop until

the traffic reaches an exit node, which forwards the traffic to the final overlay-external des-

tination. The initial circuit setup is using public key cryptography but once the circuit is

established the client exchange a symmetric key with each replica to improve performance.

By encrypting all traffic to the Tor network the client can maintain anonymity even on

a monitored Internet connection. An attacker looking at the traffic will only see encrypted

2 While an IP usually can be mapped to a specific person, most countries require a court order to release
this information.
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Figure 2.3: Overview of the Tor ecosystem. The user starts by downloading the Tor
client. The client contacts a directory server to get a list of all Tor relays, it then selects a
sequence of 3 relays with the traffic exiting the Tor network after the last hop. At each a
layer of encryption is peeled off, the final destination is only visible to the exit node.

packets destined for the Tor network. In addition the relays only get partial information

about the traffic. The first router knows that a users accessing the Tor network but the only

information available is the next hop. The middle relay knows that traffic is flowing from

a Tor relay to another Tor relay, but not the original source, destination, or content. The

last relay can look at the final destination and the content, but have no way of knowing

which user or IP address originated the request. From the service providers point of view

the only information available is that a Tor relay is contacting it with a request for data.
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Circumventing censorship with Tor

In addition to providing anonymity, Tor (described in Section 2.3.1), can by used to circum-

vent censorship. Since all requests made through Tor originate at the exit node, basic cen-

sorship techniques such as DNS filtering and DPI based keyword matching are ineffective

against Tor users. To close the loophole governments block Tor using different techniques

ranging in complexity.

Blocking torproject.org: The most basic blocking seen in the wild is to block the Tor home

page, torproject.org. This makes it harder for new users to download the tool, but existing

users are not impacted, once the user has the Tor client installed, she no longer has an

dependency on the homepage. Users can share the client binary over email, thumb-drives,

or by republishing the binary on their personal blogs; this type of blocking is ineffective

except against novice users [26].

Blocking directory servers and relays: Instead of blocking access to the client binary,

some governments prevent the clients from accessing the Tor directory [26]. The Tor de-

velopers responded by instructing all Tor relays to also provide access to the Directory

allowing users with access to any relay to get access to the network. The next step made by

censors was to periodically fetch the Tor directory and block all IPs in it. The Tor develop-

ers continued the arms race with the introduction of Tor bridges. Bridges are special relay

nodes that are unlisted in the public directory, their location is instead communicated to

users by other means. I investigate the effectiveness of Tor bridges in Section 4.1.1.

2.3.2 Freenet

Freenet [20] is a peer-to-peer network designed to support anonymous publication and

distribution of information. Only data specifically shared within the Freenet overlay is

accessible, this differs from Tor where client traffic can be forwarded to legacy Internet ser-

vices. Freenet operates in two different modes, the OpenNet mode that is free for anyone

to join, and the dark mode where all connections are between trusted social links. Using
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Freenet in dark mode limits exposure to third parties. Only trusted friends and attackers

with access to network traffic can see that a certain user is an active Freenet user.

Freenet’s data storage model is similar to that of a DHT [87, 60]. Each user must reserve

some local storage space for use by the system. Each node is responsible for storing data

in a certain key-range. All data is addressed by key and the routing algorithm tries to

locate the user in charge of a certain key. The same algorithm is used for both insertion

and retrieval. Freenet has a caching mechanism to improve performance when fetching

popular objects. After a successful content lookup the data is sent back hop-by-hop. Each

node on the path will add the object to the short term cache before forwarding it to the next

hop. If the node later sees a lookup for the same object it can respond with cached data

instead of forwarding the query.

2.3.3 Peer-to-peer and BitTorrent

Users unwilling to trust a cloud service to handle their data sharing can user peer-to-peer

networks. Peer-to-peer networks depart from the traditional client-server model used for

most Internet services; instead of relying on a centralized server to handle all requests,

peer-to-peer merge the client and server roles. Once a client receive a piece of data it

becomes a source for that data taking the role of a server. Leveraging client resource makes

peer-to-peer systems scalable. The resources of the original source no longer limits the total

amount of resources available. Because of this property, a peer-to-peer system allows its

users to share files without any need for expensive infrastructure. BitTorrent is the most

popular peer-to-peer system in use today and as of the fall of 2011 BitTorrent accounts for

13.5% of total Internet traffic in North America [81].

BitTorrent overview

Native BitTorrent is not a global network but is made up of swarms where each swarm

contains the peers interested in a particular data item. Trackers handle swarm membership,
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each tracker maintains a list of swarms registered with that specific tracker as well as the

peers associated with each swarm. When a peer joins a swarm it will issue a query to the

tracker requesting a random subset of the peers in a particular swarm. Upon receiving the

tracker response, peers connect to the other swarm members and initiate the data transfer.

Data is split into blocks commonly in the 64KB-2MB size range. When a peer completes

a block download it will verify the block hash against a list of block hashes published by

the source in a .torrent file. This protects the swarm against data corruption due to hostile

peers and faulty network equipment. Once a peer completes a block it becomes a source

of that block to other peers.

Monitoring of BitTorrent BitTorrent is not designed to protect the privacy of its users, and

it is simple to set up systems that monitor large numbers of users. As an example, during a

research project designed to measure the impact of incentives in BitTorrent I could discover

over 300,000 BitTorrent users in 48 hours [44, 58, 69]. With repeated queries to the tracker it

is possible to crawl the membership of individual swarms and the IP addresses associated

with each peer. While the primary interest in this specific case was to measure the Internet

connection properties of the users it is trivial to modify the experiment to instead record

the name of the files transferred in each swarm. In fact, more recent work performed by

LeBlond et al. collected statistics of BitTorrent users covering 148 million IPs over a period

of 103 days [53]. With that level of surveillance it is possible to also deduce the initial

source of the data, in addition to the set of people downloading each item.

It is not only researchers who have discovered how easy it is to monitor file sharing

networks. An example is YouHaveDownloaded [91], an online service that lists the files

downloaded by a particular IP address. YouHaveDownloaded claims to monitor 20% of

BitTorrent downloads using public trackers. The creator or the site, Suren Ter, says he

started it as a joke to show to the public how easy it is to track people on the Internet.

Rights holders are also monitoring peer-to-peer networks for copyright infringement.

By outsourcing copyright enforcement to firms specializing in peer-to-peer surveillance
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they can find all users sharing a specific data item leading to lawsuits with tens of thou-

sands of defendants [31]. It is unknown if these firms only monitor the specific content they

are instructed to track, or if they seek a more global view allowing them to proactively seek

out clients based on observed usage statistics. Either way, monitoring of popular peer-to-

peer systems is rampant on the Internet today giving users the undesirable choice between

using a cloud service and thus being tracked by the cloud provider, or, using a peer-to-peer

network and risk getting monitored by anyone.

2.3.4 Closed solutions

The Global Internet Freedom Consortium (GIFC) provides a number of closed-source so-

lutions for censorship circumvention. The most popular GIFC tools are Garden, Ultra-

Surf, DynaWeb, GPass, and FirePhoenix. Little public information is available about these

proprietary anti-censorship tools, and they use techniques such as code obfuscation, code

signing, wrapping, and even resort to using decoys. It is unclear however, whether these

systems are robust to monitoring or censorship. Further, closed source solutions preclude

community participation and scrutiny, and require the users to implicitly trust the devel-

opers to not leak sensitive or private information. A closer look at one of those systems,

UltraSurf, has shown that it has architectural and implementation defects [7]. I leave these

systems outside the scope of this thesis.

2.4 Social overlay networks

In this dissertation I explore how to design overlay networks where trust from the users

existing social network is used to improve both the privacy guarantees and the perfor-

mance of overlay network. I call these overlays social overlay networks. Basing the overlay

topology on the social network of the users makes it possible for system to take the trust

users have in each other into account. In the case of OneSwarm the system relies on trusted

friends to not reveal the source of data when forwarding requests. In the case of Unblock
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users trust their friends to not expose their network address to the censor.

Limiting the topology to just the social network works well for users with a large

number of friends in the system, but users with few connections suffer from poor per-

formance in the best case, and complete disconnection from the overlay in the worst. Both

OneSwarm and Unblock provide users with an optional mechanism for adding untrusted

peers. Naturally, the addition of untrusted links worsen the security guarantees of the

users that chose to use them as user cannot be certain the the untrusted peer is not ma-

licious. Protocol behavior towards untrusted peers must therefore be different towards

untrusted versus trusted peers. Both OneSwarm and Unblock behave differently towards

untrusted peers to protect the user from attacks.

In practice the overlay contains a mix of trusted and untrusted links. The structure

of the overlay means that there often exists a multiple possible paths between any two

users. While the performance of an single path is poor and unreliable, both OneSwarm

and Unblock implements search and routing algorithms and a transport layer capable of

using multiple paths simultaneously. In the next chapter I describe how the reliance of

social network links, the addition of untrusted links, and the use of multi-path impacts the

design, security, and performance of OneSwarm.



21

Chapter 3

ONESWARM

This chapter describes the OneSwarm data sharing protocol, implementation, and eval-

uation. OneSwarm explores a new design point in the tradeoff between privacy and per-

formance. It aims to provide much better performance than Tor and Freenet and much

better privacy than BitTorrent. The goal is to provide good enough performance that users

turn on privacy by default for all of their non-public data sharing.

Data objects shared via OneSwarm are located and transferred using disposable, tem-

porary addresses and routed indirectly through an overlay mesh, providing resistance to

the systematic monitoring of user behavior. Content lookup and transfer is congestion-

aware and uses multiple overlay paths, providing good performance at reasonable over-

head even for rare objects and diverse peer bandwidths.

Central to the design is a notion of flexible privacy. OneSwarm does not adopt a univer-

sal guarantee regarding information exposure; each individual user is free to control the

tradeoff between performance and privacy by managing trust in peers as well as sources of

peers. Deployment experience has shown that support for divergent, individual notions of

privacy is essential for adoption. In the year since its release, OneSwarm has been down-

loaded hundreds of thousands of times, translated to more than half a dozen languages,

and it is in active daily use by thousands of people world-wide.

The feedback and behavior of this community has guided the evolution of the protocol,

driving its design towards increased user control, while nevertheless retaining resistance

to systematic third-party monitoring.

In addition to its qualitative impact on design, OneSwarm’s user community serves as

the basis for the evaluation of the system. I report measurements of data transfers between
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instrumented clients running on PlanetLab communicating through the OneSwarm mesh.

Despite the overhead of providing privacy, OneSwarm’s performance is competitive with

unanonymized BitTorrent. Furthermore, a novel lookup and transfer technique yield a me-

dian factor of five improvement in large file download times relative to Tor and a median

factor of twelve improvement relative to Freenet.

Measurements of system properties of OneSwarm are limited by the need to protect

the privacy of the users of the system. To gain insight into the behavior of the system at

scale, I complement the PlanetLab measurements with a simulations study. For this, I use

a trace of the object sharing patterns and social connectivity of more than 1 million users of

last.fm, a popular music-focused website that aggregates the playback histories and social

network of its users [52]. Trace replay shows that OneSwarm provides high availability,

with 95% of satisfiable requests being fulfilled by the overlay during peak load.

3.1 Measurements

Currently, systems builders have limited data with which to evaluate new protocol designs

layered on top of social networks. Without measurements of real social graphs and asso-

ciated workloads, the relevant constraints and properties of the environment are unclear.

Recently, significant progress has been made towards measuring and understanding the

properties of online social networks [2, 61, 62]. But, these existing studies have focused

primarily on graph properties. While essential, graph properties alone are not sufficient.

To design and evaluate file sharing protocols built on top of a social graph it is important

to understand the sharing behavior of users as well.

In this section, I report measurements of both a social network and a sharing workload.

The popular music website last.fm1 provides both. last.fm builds music related services

on top of a database of user listening habits and a social network. These services include

artist recommendations, Internet radio, popularity charts, interest groups, etc. To build the

1http://www.last.fm/

http://www.last.fm/
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collective database, last.fm users run custom software that reports the playback history of

each user’s local music library. While last.fm does not provide any data-sharing features

and it does not include user-generated content, the listening habits of users represents a

portion of the potential workload for OneSwarm, e.g., for privacy preserving P2P distribu-

tion to users with a license to an entire playlist. Basing simulations on this workload allows

me to take both the social network as well as the content interests of individual users into

account instead of modeling the social network and the content interest independently.

Maintaining a list of friends is not required to use any of last.fm’s core functionality. The

social network is used to provide communication, notifications, and convenient access to

the listening histories of friends. All friend links are symmetric and must be approved by

both parties. Also, each user’s list of friends and listening history is public.

In the remainder of this section I review my trace methodology and present an analysis

of the trace as motivation for my design in the next section. I then return to the trace in

Section 3.5 as part of the evaluation for OneSwarm.

3.1.1 Methodology

To measure both the social graph and each user’s listening behavior, I used last.fm’s public

XML-RPC API.

Crawling the social graph: Given a user name, the last.fm API provides a list of that user’s

friends. I crawled the social graph using a breath first search starting from several manu-

ally chosen seed users. Because last.fm acceptable use policy imposes a rate limit on API

calls, this process took one month to complete (August 25th – September 25th, 2008).

Crawling the sharing workload: The last.fm API provides a list of song identifiers and

play counts for users at a per-week granularity. Along with social links, I collected a trace

of these week-long histories for each crawled user for the two weeks prior to the start of

our crawl. Although these week-long histories provide a coarse-grained view of usage per

user, they do not translate directly to fine-grained trace replay, i.e., at the granularity of
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minutes. last.fm provides fine-grained information with song identifiers and timestamps

as an RSS feed for each user, but monitoring these RSS feeds for all last.fm users exceeds

the crawl rate-limit. Instead, I sampled the RSS-feed of 1,000 random users from the crawl

and the model of short-term activity uses this trace.

3.1.2 Social network

The crawl discovered 1,768,197 users and 6,325,306 social links. Most users that had so-

cial links were in a single large connected component. Because last.fm does not provide a

count of all active users, I estimate coverage by sampling users and computing the fraction

of these that were observed during the crawl. last.fm provides lists of users per country,

and my samples were drawn randomly from the set of all users providing country in-

formation.2 I sampled 8,081 such users of which 4,263 occur in the crawl (53%). Of the

remaining users, 92% have no social links. The remaining 8% of users are grouped into

small, disconnected clusters. These results suggest that the crawl covers the largest con-

nected component in the social network and that the overwhelming majority of remaining

users have no social links.

Degree distribution: Figure 3.1 shows the complementary cumulative distribution func-

tion (CCDF) of degrees for all users observed in our trace. The crawl reveals that the

majority of users have very low degree. 30% of users have just one social link, the median

degree is 3, and 81% of users have 10 or fewer friends in last.fm. This is in many ways the

worst case for OneSwarm: reaching the majority of fringe users requires longer average

path lengths. Also shown is a best-fit power law distribution (α = 1.51) obtained using

the maximum likelihood method [21]. The Kolmogorov-Smirnov goodness-of-fit metric

for the fit is 0.137. Unlike other social networks, the last.fm degree distribution does not

strongly follow a power-law. This is likely to be the case for the OneSwarm social network

as well. It is unlikely that any single user will have a trust relationship with millions.

2Although I could sample such users by screen scraping web pages, enumerating all users in this manner
violates the last.fm API acceptable use policy.
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Figure 3.1: Complementary cumulative distribution (CCDF) of degrees for all users in
the last.fm trace. A best-fit power law distribution is shown (α = 1.51) for comparison.

There is no requirement for users to add their social network to last.fm, most function-

ality is available even when no friends are specified. This is different than the model in

OneSwarm, users where users get improved performance by adding their friends in the

system. Because of this I believe the last.fm social graph to be a conservative estimate of

how the OneSwarm social network will look at scale.

3.1.3 Resilient core

Social networks tend to have a highly connected core of nodes. For protocols built on social

networks, this may hinder both performance and robustness. When available, core nodes

may become bottlenecks. When unavailable, path lengths increase, raising overhead and

reducing capacity, and some nodes become completely disconnected.

For my purpose of layering a data sharing system on a social network, understanding

the structure of the core is crucial for system design. If most paths necessarily transit the

core, these nodes will need to carefully manage the sharing of their scarce resources. But, if
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Figure 3.2: The fraction of nodes in the largest connected component of the last.fm
social graph (y-axis) as an increasing fraction of high degree nodes are removed (x-axis).

significant path redundancy exists, core nodes can (and should) be avoided during periods

of congestion.

To understand which of these effects dominate the following analysis was performed.

After removing a fraction of the highest degree nodes from the graph, the resulting con-

nectivity is computed. This removal is then repeated for an increasing fraction of nodes.

The results are summarized in Figure 3.2. Connectivity degrades slowly, suggesting the

existence of redundant paths around any highly connected nodes. This data differs some-

what from previous studies of online social networks [62]. For example, Mislove et al.

showed that in the Flickr social network the connected component fractured completely

after the removal of 10% of the highest degree nodes; in contrast, the last.fm social graph

fractured after removing 24% of the highest degree nodes. I speculate that this difference

is due to last.fm lacking publish/subscribe support for extremely popular nodes; lacking

these nodes, the last.fm graph is already split into a connected component and many iso-

lated users. President Obama may (as of this printing) have millions of “friends”, but he
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is unlikely to mediate file sharing requests for each of them. At the very least, the data

indicates there may be more resilience in social graphs than previously thought. I caution

that the results may not generalize beyond this data set.

Synthesizing these results, I observe that limited path redundancy is expected for those

users with extremely low degree. But, for the set of nodes with even modest connectivity,

redundant paths exist, even after targeted removal of high degree nodes. From the per-

spective of building OneSwarm, these results call for an adaptive design. High load on

core nodes should be detected and alternate paths used. But, in circumstances where such

paths are the only option, resource sharing must be effective.

3.1.4 Path properties

The average shortest path between users in the last.fm social graph is 7.1, and the diame-

ter is 14.3 Paths between last.fm users are longer than those reported of other social net-

works, e.g., Mislove et al. report average path lengths between 4 and 6 for popular social

networks [62]. I attribute this difference to the absence of very high degree nodes in the

last.fm data set and to the relative prevalence of low degree nodes; both factors increase

path length.

Longer path lengths present a challenge for multi-hop overlay forwarding; any single

path is likely to contain some node with limited capacity, and each path is only as fast

as its slowest link. However, I lack the ability to measure the bandwidth of each last.fm

user. Instead, I synthesize this data by assigning each user in the last.fm social graph a

bandwidth capacity drawn randomly from a bandwidth distribution of typical peer-to-

peer users. The details of these bandwidth measurements are out of scope for this work.

More information can be found in my report on the subject [44].

Figure 3.3 compares 50,000 randomly selected {source, receiver} pairs in terms of uti-

lization of sender’s capacity, for various transfer disciplines. This data shows the potential

3Because computing all shortest paths in such a large graph is not computationally feasible, these results
are based on a sample of 50,000 randomly selected user pairs.
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Figure 3.3: Unused client bandwidth for transfers involving either the fastest single
path, multiple paths, or multiple paths for the subset of clients with more than five
friends. Using the fastest single path, just 24% of user pairs saturated the sender’s ca-
pacity. This increases to 39% when using multiple paths. For users with more than 5
friends 60% of senders are fully utilized.

for improvement from using multiple paths. Even assuming we could find the fastest sin-

gle path, just 24% of user pairs saturated the sender’s capacity. This increases to 39% when

using multiple paths. With multiple paths, performance is limited by the large fraction

(nearly 30%) of last.fm users with only a single friend. The most significant increase in

performance comes from combining multiple paths and multiple friends. In this case, 60%

of senders are fully utilized. To achieve full utilization, we need multiple paths, multiple

friends, and multiple sources.

3.1.5 Listening habits

This section reports measurements of the listening behavior of last.fm users. I focus on the

workload properties most relevant to the design of OneSwarm. These are: 1) the popular-

ity of objects, 2) the variation in demand among users, and 3) the total and peak demand.
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Figure 3.4: Cumulative distribution of object demand in the last.fm and BitTorrent
workloads.

I discuss each of these in turn.

Object popularity

For file sharing systems layered on social networks, path lengths depend on both the con-

nectivity of users and the object popularity. Even if paths between users are typically

lengthy, paths to popular objects may be short because of replication. I first consider object

popularity in terms of requests per object.

Although the majority of objects are unpopular, as expected, popular objects account

for the majority of total demand. Figure 3.4 shows the cumulative fraction of total system

demand attributed to objects ordered by decreasing popularity. I include an identical ac-

counting of demand in the BitTorrent P2P file sharing system produced by Piatek et al. for

comparison [72]. Demand is skewed in both BitTorrent and last.fm but the distributions

differ. Unpopular objects contribute significantly more to total demand in last.fm than in

BitTorrent. Songs listened to by three or fewer unique users account for 10% of total de-
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mand. Also, popular last.fm objects account for a larger fraction of total demand than do

popular BitTorrent objects. The top 5% of objects account for 79% of total demand in last.fm

and 63% in BitTorrent.

The comparatively large fraction of total demand attributable to unpopular objects may

stem from last.fm’s approach to data collection. Existing P2P workload measurements are

influenced by the properties of the distribution system. For example, if accessing unpop-

ular objects is slow or impossible in a particular P2P network, an object request trace is

likely to underrepresent the true demand for those objects. Since last.fm simply records

user behavior when interacting with their own libraries, it does not exhibit this bias.

Assuming that content in OneSwarm exhibit a similar popularity distribution to con-

tent requests in last.fm and BitTorrent this data has the following implications for the de-

sign. 1) The skew in object popularity means that many requests will be for popular objects

with plentiful replicas; locating these will not require a thorough search of the entire over-

lay, presenting an opportunity for optimization to reduce overhead. 2) But, to locate less

unpopular objects, OneSwarm should be able to conduct a thorough search if needed.

Demand per user

Figure 3.4 show demand from the perspective of objects. Next I turn to demand per user.

For last.fm, demand per user is the distribution of songs played, shown in Figure 3.5. De-

mand varies by orders of magnitude; some user histories include 10s of songs while others

include 1000s. This type of skew in demand is typical of object request workloads. While

one might expect heavy users of last.fm to also have many friends, the length of play his-

tory and the number of friends are only weakly correlated (ρ = 0.14). From the perspective

of file sharing, this implies that a significant fraction of requests will come from users with

only limited connectivity.

The measurements in Figure 3.5 describe only active users, i.e., those that listen to at

least one song. Surprisingly, these users are in the minority; 52% of measured last.fm users
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Figure 3.5: The cumulative fraction of users (y-axis) playing a given number of unique
songs (x-axis) or fewer in our two week trace.

did not listen to any songs during our two week trace. If users only keep their client

running while actively using the system protocol designers building on social networks

should expect a large fraction of the social links to be unavailable even over lengthy time

scales. Over shorter time scales, the last.fm usage exhibits a typical diurnal pattern with

peak activity of 7.3% of users and a typical daily minimum of 2%, obtained using our

fine-grained measurements of the listening behavior of 1,000 users.

Total demand

Over the two weeks of our activity trace, I observed 799,953 users that listened to at least

one song with 156,295,286 total songs played. Of these, 15,120,192 were unique song re-

quests per user. Multiplying this value by the average song length in bits (weighted by

popularity) gives an estimate for the total demand. Assuming an audio bitrate of 128

Kbits/s, total demand for measured last.fm users over two weeks is 44.6 TB.

Our measurements suggest that, at least for a music sharing workload, multihop over-



32

lay forwarding is practical given current broadband capacities. Distributing 44.6 TB in two

weeks requires just 4.2 MB of data per user per day. Even when forwarded over multiple

hops, this meager amount of traffic is still well under the gigabytes of total capacity of even

a modest 1 Mbit home broadband connection. Even when forwarding data over multiple

hops the amount of bandwidth needed is significantly less than the bandwidth available,

suggesting that a social network based overlay will be able to support this traffic pattern

without problem. Further, because our trace accounts for only two weeks of usage, I over-

estimate the steady-state demand of the last.fm workload. The number of unique songs

added by the second week of our trace was roughly half the unique songs discovered dur-

ing the first week.



33

?
Figure 3.6: An example of the range of data sharing scenarios supported by OneSwarm.
Bob downloads public data using OneSwarm’s backwards compatibility with exist-
ing BitTorrent implementations, and makes the downloaded file available to other
OneSwarm users. Alice downloads the file from Bob without attribution using
OneSwarm’s privacy-preserving overlay, but she is then free to advertise the data to
friends. Advertisements include a cryptographic capability, which allows only permit-
ted friends to observe the file at Alice.

3.2 Data sharing with OneSwarm

Figure 3.6 illustrates the range of privacy preserving options supported by OneSwarm. In

this example, suppose users Alice and Bob both want to download a left-leaning political

podcast. Suppose further that Bob does not consider his political views to be sensitive

information, but Alice would prefer that her political views not be made public; instead,

she might want to share the podcast with just a few like-minded friends.

OneSwarm supports all of these levels of privacy within the context of a single swarm.

Bob downloads the podcast from a public set of existing BitTorrent and OneSwarm peers.

During the download, Bob also acts as a replica for sharing without attribution using an

overlay consisting of OneSwarm peers only. This overlay obscure the identities of a path’s

source and destination. Alice is one such destination, and she downloads the podcast using

only anonymizing paths to preserve her privacy from third-party monitoring. But, she is

free to advertise the file explicitly to friends who may also be interested in the content.

Each case shown in Figure 3.6 imposes a different tradeoff between privacy and effi-

ciency. Publicly distributed data is not private, and direct transfers between a large set of
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replicas yield efficient distribution. Sharing data with permissions limits access and hence

distribution capacity. Finally, data shared without attribution is accessible by anyone, but

the set of users sharing the data is obscured, which increases overhead. To summarize:

• Public distribution: All data sharing need not be private. This is the case for which

existing P2P systems excel, and OneSwarm draws on this strength by serving as

a fully backwards compatible BitTorrent client. This helps bootstrap content into

OneSwarm’s privacy preserving overlay; data originally obtained using legacy pro-

tocols can be easily shared using any other mode. Sharing recorded course lecture

videos is an example of this type of distribution.

• With permissions: Persistent identities allow OneSwarm users to define per-file

permissions. In this case, access to files is restricted (rather than attribution of source

or destination). In OneSwarm, capabilities restrict access to protected files, allowing

all permitted users to recognize one another and engage in swarming downloads

for scalability.4 For example, OneSwarm can be used to restrict the distribution of a

photo archive to friends and family only.

• Without attribution: When sharing sensitive data, privacy depends on obscur-

ing attribution of source and/or destination. Unlike data shared with permissions,

which is directly advertised, data shared without attribution is located using privacy-

preserving keyword search, and data transfers are relayed through an unknown

number of intermediaries to obscure source and destination. This type of distribu-

tion is appropriate for sensitive material. Since it is up to the user to define what is

sensitive, the same data object

4Of course, capabilities (or data itself) can be relayed to others once obtained, but OneSwarm’s default
behavior is to maintain restrictions on data shared with permissions unless explicitly overridden.
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3.2.1 Workload constraints

The workload measurements in the previous section provided information about the chal-

lenges that the protocol must handle. To summarize the findings:

• Skewed object popularity motivates popularity-aware search: The object popularity in last.fm

is heavily skewed; the top 5% of objects account for 79% of total demand. Even so,

rarely requested objects comprise a significant portion of the overall demand. To

support this workload, the mechanism used for finding content must be able to effi-

ciently find popular content while still being able to locate unpopular objects.

• Long paths motivates multipath downloads from a single source: In last.fm, the average

shortest path between any two users is 7.1. In an overlay with similar structure, the

diversity of end-host bandwidth capacities means that any single path is likely to be

slow, limited by its lowest-capacity and/or most congested link. To provide good

performance, OneSwarm uses multiple paths per-source to transfer data.

• A resilient core improves availability but requires adaptation to congestion: last.fm has sig-

nificant path diversity and a very resilient core. But, the popularity of a minority of

well-connected users suggests that as the amount of traffic in the network increases,

OneSwarm must be able to find alternate routes to avoid congested nodes.

• Bootstrapping is crucial since many users have few trusted links: As with many social

networks, popularity is highly skewed in last.fm and the majority of users have few

social links. In an overlay, this would reduce both performance and privacy: down-

loads are efficient only when there are multiple path options, and privacy can like-

wise be more easily compromised for users with very limited fanout. For such users

to benefit from OneSwarm, the design includes mechanisms for both trusted and

untrusted overlay links.
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These constraints shape OneSwarm’s control and data transfer protocols as well as how

users manage and define trust relationships.

3.3 Protocol design

In this section I describe the OneSwarm protocol. Table 3.1 provides a road map. I first

provide an overview before describing each mechanism in detail; I defer a detailed security

analysis to the next section.

3.3.1 Overview

Broadly, the protocol supports two tasks: 1) defining and maintaining the overlay topology

and 2) locating and transferring data objects. A key design insight is that good P2P data

sharing performance results from being able to optimize over multiple options for each

data transfer. Thus I explicitly designed OneSwarm to make it easy for users to configure

a rich peering topology and then to use that topology efficiently for each transfer.

Topology

OneSwarm users define overlay links by exchanging public keys, which identify nodes

in the mesh and bootstrap authenticated and encrypted direct connections between peers

in the underlying IP network. Thus, hassle-free key distribution is essential for usability,

and OneSwarm uses social graph import and community server mechanisms to make key

distribution straightforward for users. A distributed hash table (DHT) serves as a name

resolution service; each client maintains encrypted entries advertising their IP address and

port to authorized peers.

OneSwarm peers are either trusted or untrusted.5 Trusted peers reflect real-world rela-

tionships, e.g., friends and family, and object permissions are defined in terms of access

5In practice, trust can be defined on both a per-object and per-peer basis. I discuss trust at the granularity
of peers for simplicity.
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control lists of trusted identities. Untrusted peers are used only for data sharing without

attribution, serving to bootstrap mesh connectivity for users with few trusted friends.

Supporting a mix of trusted and potentially untrusted peers provides greater perfor-

mance than using only trusted peers and enhances privacy relative to using only untrusted

peers. Moreover, my experience has shown it to be a practical necessity for user adoption.

The initial implementation assumed mutual pairwise trust among directly connected peers

in order to simplify the protocol and security analysis. But, this restriction was widely crit-

icized (or ignored) by many early adopters, leading to a design supporting variable trust

in peers. Untrusted peers are treated differently by the protocol; the timing and delivery

of messages are randomized to frustrate statistical attacks.

In Section 3.3.5, I outline the random perturbations of the timing and delivery of proto-

col messages needed to support untrusted peers, delaying a more complete discussion of

attacks and defenses until Section 3.4 to first provide a complete protocol description.

Transport

The mesh defined by the web of trust among users is used to locate and transfer data. The

overall approach is inspired by the success of existing P2P swarming systems, e.g., BitTor-

rent, and I adopt existing swarming techniques wherever possible, with three adaptations

to enhance privacy. First, instead of sharing all data publicly with distinct and dynamic

sets of peers, each OneSwarm client restricts direct communication to a small number of

persistent contacts, which provide indirect connectivity to the rest of the mesh. Second,

instead of centralizing information about which peers have which data objects, e.g., at a

tracker as in BitTorrent, OneSwarm peers locate distant data sources by flooding object

lookups through the overlay. Third, instead of sources sending data directly to receivers,

data transfers occur over the reverse search path in the mesh, obscuring the identities of

sender and receiver when sharing data without attribution.

Flooding lookup and indirect transfers increase the overhead of OneSwarm relative to
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existing protocols such as Freenet, potentially creating capacity constraints and/or bottle-

necks. To cope with this, OneSwarm’s search and data forwarding protocols are congestion-

aware, automatically routing around overloaded intermediaries and allowing such nodes

to shed load at will. To provide high performance in the face of overloaded or slow paths,

OneSwarm transfers use multiple paths to each data source. To incentivize users to con-

tribute capacity, each OneSwarm client maintains a history of traffic volumes provided by

its peers, using this information to prioritize service during periods of congestion.

3.3.2 Linking trusted peers

Each OneSwarm user generates a 1024 bit RSA public/private key pair when installing the

client, with the public key serving as its identity among its peers. OneSwarm identities are

persistent, allowing two users that have exchanged keys to locate and connect to one an-

other whenever both are online, even though their IP addresses might change. In existing

social-sharing P2P designs [20, 73], key exchange is typically manual. I view manual ex-

change as a hindrance to adoption and include multiple methods for users to more easily

distribute keys.

Between two OneSwarm users that share a real-world trust relationship, OneSwarm

automates key exchange in three ways. First, as in UIA [34], the OneSwarm client discov-

ers and exchanges keys with other OneSwarm users over the local area network. Second,

I piggy-back on existing social networks, e.g., Google Talk, to distribute public keys auto-

matically among friends. Third, users can email invitations. Invitations include a one-time

use capability that authenticates the recipient during an initial connection, during which

public key exchange occurs.

For all methods described above, users can choose whether to accept new overlay links.

This allows users to maintain separate lists of OneSwarm contacts and contacts from other

social services, while still avoiding the inconvenience of manually exchanging keys with

friends out-of-band.
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XMPP

XMPP is an open instant messaging standard and is the underlying protocol used for the

Google Talk and LiveJournal instant message services. Each user adds friends to a list of

contacts to exchange messages, transfer files, and receive status updates. The set of contact

lists forms a social network among users. To piggyback on this network, OneSwarm speaks

the messaging protocol and notifies a bot running at UW that the user’s XMPP identity

corresponds to a given OneSwarm identity. During this exchange, the bot notifies the user

if any of their XMPP friends are also OneSwarm users. This is a two step process. First,

each client send the bot its public key, a nickname, and a list of the SHA-1 hash of each

of its XMPP friend IDs. Next, the bot checks an internal database to determine whether

another OneSwarm user has registered a key corresponding to any ID hash in the list. If

so, the bot verifies that the relationship is symmetric; i.e., both have registered the hashes

of each other, and then returns the nickname and public key of the remote peer to the client

registering its friend list. During the remote peer’s next update, the situation is reversed,

and both peers will have learned the each other’s keys.

3.3.3 Managing groups and untrusted peers

Exchanging keys manually allows for fine-grained control, but in many circumstances

explicitly authorizing every peer relationship is cumbersome and unnecessary. Further,

OneSwarm is frequently used by communities of users with dynamic membership but

mutual pairwise trust, e.g., a group of colleagues at the same institution. In such cases,

users can benefit from an automated service that provides subscription to keys.

To support key management within a group, OneSwarm allows users to subscribe to

one or more community servers. A community server maintains a list of registered users and

provides authorized subscribers with a current set of public keys via a secure web connec-

tion. In effect, subscribers to a given community server delegate trust regarding a subset

of their peers to the operator, who vets prospective members. These private community



41

servers mediate key exchange among users with existing trust relationships.

In contrast with private community servers, public community servers have open mem-

bership, allowing new OneSwarm users to easily obtain a set of untrusted peers. Boot-

strapping early adopters is a significant challenge for overlay networks based on pairwise

trust. But, in the case of sharing without attribution, trusted peers are not required; privacy

depends on the obfuscation provided by forwarding data through multiple unknown in-

termediaries. Untrusted peers are used only for this type of sharing and serve to bootstrap

overlay connectivity for users with few trusted friends.

Registration itself is a three step process. First, the OneSwarm client provides its public

key, which the server then verifies by issuing a challenge nonce value and verifying the

incremented, encrypted response. Finally, the server uses consistent hashing of the public

key to compute a subset of peers to return to the client.

Community server registration is designed to inhibit systematic crawling of the mem-

bership list of a public community server. Verifying keys with a challenge/response allows

the server to limit the number of registrations by a single IP address, consistent hashing

limits the information obtained from repeated membership queries, and each connection is

established only when both nodes have obtained the identity and the location of the other

node from the community server.6

Although an attacker with significant resources can evade these restrictions by creating

many Sybil identities from distinct IPs, doing so is of limited value. The overlay topology

is an amalgam of links from community servers, manual exchanges, email invitations, and

other social networks; a crawl of community servers provides only a partial view, and

more privacy conscious users need not subscribe to any community server whatsoever. I

consider the effectiveness of attacks enabled by public community servers in more detail

in Section 3.4.

6An alternate approach would be to obtain a random set of peers from a DHT, but a significant limitation
is that current DHTs are not robust to Sybil creation from a single IP.
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3.3.4 Identity and connectivity

To be able to locate and identify peers with changing network address OneSwarm creates

a a long-term identity when first started. Long-term identities are linked to transient IP

addresses and port numbers via a distributed hash table (DHT) maintained among all

users. On startup, each client P inserts a copy of its current IP address and port into the

DHT. This value is inserted multiple times—once for each peer.

DHT entries for a client P are encrypted with the public key of a given peer and signed

by P. Each entry is indexed by a 20 byte randomly generated shared secret, which is agreed

upon during the first successful connection between two peers.

Prior to the initial connection with a newly added friend, P temporarily advertises con-

nectivity information at a special location: the SHA-1 hash of the concatenation of P’s pub-

lic key and the public key of the given friend. This location serves as the initial rendezvous

point.

Inserting connectivity information individually for each peer enables fine-grained con-

trol over network address information. A simple alternative is indexing connectivity in-

formation by the public key of P alone. But, in that case, any user that learned P’s public

key could monitor P’s IP location as long as P maintained its identity. By encrypting up-

dates and publishing connectivity information for each peer individually, P can control

and revoke each peer’s access to its IP location updates.

In my implementation, ID → {IP, Port} mappings are stored in a Kademlia-based DHT

using twenty-fold replication for fault tolerance [60]. This level of replication has been

shown to provide high availability for DHTs running on end-hosts [32]. Each client’s lo-

cation in the DHT is independent of its identity and is determined by hashing the client’s

current IP address and DHT port.
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3.3.5 Naming and locating data

OneSwarm peers connect to one another using secure sockets (SSLv3) bootstrapped by

their RSA key pairs. When two peers connect, they exchange file list messages. file list mes-

sages are compressed XML including attributes describing the name, size, and other meta-

data for files for which a particular peer has permissions. (The node sends an empty list to

each untrusted peer, or if it has nothing to share with a specific peer.)

Naming

Shared files (or groups of files) are named in OneSwarm using the 160 bit SHA-1 hash of

their name and content. The low order 64 bits of this hash are used as an ID in search mes-

sages; these messages are flooded to discover potential data sources. For public data, users

obtain content hashes 1) out-of-band, e.g., from an email or website, 2) from file list mes-

sages exchanged with peers, or 3) from keyword search in the overlay. I describe transfer

negotiation via search since this subsumes the other cases.

Congestion aware search

OneSwarm search is designed to manage the tradeoff between overhead and performance

by being congestion aware. Using the shortest path minimizes overhead, but risks poor

performance if the shortest path is slow or overloaded. Given that highly connected users

are more likely to appear in a path, this is a practical concern.

OneSwarm addresses this by managing the propagation of searches. Because the path

taken by a search message determines the path of data transfer, the key idea is to forward

searches along the shortest path possible (to limit overhead) subject to each intermediary’s

current load (to improve performance).

To discover shortest paths, OneSwarm relies on flooding. Keyword search messages

include a randomly generated search ID and list of keywords. Unlike flooding search in

other P2P file sharing networks, OneSwarm search messages do not include a time-to-live
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value since this information would allow intermediaries nearby the source or destination

to easily reason about behavior. Instead, OneSwarm forwards searches to trusted peers

provided the forwarder has idle capacity and the search has not been forwarded previously.

By maintaining a set of rotating Bloom filters, an hour of search history can be remembered

space-efficiently, ruling out the possibility of searches living forever in the overlay.

Among untrusted peers, forwarding is randomized to prevent collusion attacks. In-

stead of forwarding unmatched search messages to all peers, OneSwarm forwards searches

to untrusted peers probabilistically. This inhibits colluding untrusted peers from inferring

a data source by observing the lack of a forwarded search message. To prevent informa-

tion leakage through repeated queries, the decision to forward a search is made randomly

—but deterministically— so repeated queries for the same data will yield the same result.

I explore the privacy implications of this in Section 3.4.5.

To avoid the propagation of every search to every client in the overlay, each client de-

lays each search message for at least 150 milliseconds before forwarding it to peers. The

search source (or any forwarder) may terminate the search, once enough data sources have

been discovered, by sending a search cancel message to nodes to which they have sent

or forwarded a search message. The search cancel message is forwarded along the same

paths as the corresponding search message but without any forwarding delay, allowing

cancel messages to quickly reach the search frontier. Previous studies have shown that

most searches in P2P network are for files with many replicas [17] and as a result these

popular searches will be canceled quickly, reducing overhead.7

In addition to the fixed forwarding delay for search cancellation, OneSwarm also delays

messages based on the load at each intermediary. Where load is high, searches get delayed

due to queueing. This causes searches to propagate over alternative paths, improving

performance. When excess capacity exists, search messages will follow the shortest path,

reducing transfer overhead.

7Search overhead could also be reduced by routing queries through super-nodes or performing random
walks [17], but such optimizations either impact privacy or result in transfers over long paths.
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This design trades global reachability for lower overhead. Specifically the design does

not guarantee that each object can be found by all nodes at all times. When nodes ex-

perience congestions they probabilistically drop search messages to ensure that available

bandwidth is used for data forwarding. Searches will flow over alternative, non congested,

paths if they exists. If no alternate paths are available the search will fail. An evaluation of

the efficiency and effectiveness of the search algorithm is provided in Section 3.5.2.

Path setup

If a node has the file that matches a search query, it does not forward the search. Instead,

it responds with a search reply message. Among trusted peers, this response is immediate.

But, receiving a search reply message in less than 150 ms (the default per-hop forwarding

delay) would reveal the responder as a data source to potentially untrusted peers. To pre-

vent this, the OneSwarm software delays search reply messages (and all protocol messages)

sent to untrusted peers in order to emulate the delay of a longer path. This value is chosen

randomly between 150-300 ms (i.e., 1–2 hops). As with forwarding of search messages, the

delay value is persistent for a particular file and a particular peer to prevent information

leakage from repeated queries.

Search reply messages include the search identifier, a list of content hashes for matching

files, file metadata, and a path identifier. The path identifier allows clients to distinguish

among multiple paths even if those paths partially overlap. I first describe how path IDs

are computed and then how they are used to enable multi-path and multi-source down-

loading. Each peer maintains a randomly chosen link ID for each peer link and keeps this

information private.8 The data source sets the initial value of the path ID to the lower 32

bits of the first matching file’s hash. Next, the search reply is sent (to each peer who for-

warded the data request) with the SHA-1 hash of the initial value XOR’d with the link ID

of the given peer. This process of updating the path ID is repeated at each overlay hop,

8Though randomly chosen, this value is fixed for the lifetime of the connection.
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1
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32

5

Figure 3.7: An example of end-to-end path ID computation. Client 5 searches for peers
with file ID 0xABC and queries are forwarded along the dashed links. In this case 2
unique paths are found.

resulting in a unique ID for each path back to the sender. A simple example of path ID

computation is shown in Figure 3.7. The ability to recognize unique paths allows the re-

ceiver to add new paths during the course of a download. Transfers can start as soon as

one path is discovered. New searches can be launched to replace paths that fail, while still

allowing the search originator to eliminate duplicate paths.

3.3.6 Swarming data transfer

A path identifier indexes routing tables at each overlay hop and effectively identifies a

circuit from data source to receiver. Keep-alive messages refresh paths, which expire af-

ter thirty seconds of inactivity. OneSwarm uses the wire-level protocol from BitTorrent to

transfer data [22]. But, rather than connecting directly to peers, OneSwarm tunnels BitTor-

rent traffic through overlay paths. Each overlay path is treated as a virtual BitTorrent peer,

even those that terminate at the same endpoint. Of course, the receiver has no definitive

way to know which paths terminate where. Rather than obtaining a list of peers from a
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centralized tracker, as in BitTorrent, OneSwarm discovers new paths by periodically flood-

ing search messages for active downloads.

Basing OneSwarm’s wire-level protocol on BitTorrent draws on BitTorrent’s strengths.

Swarming file downloads minimize redundant data transfers in the overlay. If multiple

users are downloading a popular file, OneSwarm will discover and use paths to those new

partial sources.

Like the unpredictable and heterogeneous end-hosts BitTorrent is designed for, multi-

hop overlay paths have highly variable bandwidth and end-to-end latency. Scheduling

block requests over unpredictable paths requires careful engineering to avoid wasting ca-

pacity or inducing lengthy data queues. I take advantage of parts of the BitTorrent protocol

that allow multiple requests to be queued at the data source, effectively giving the host con-

trol over the end-to-end transfer window size. For example, if a path becomes congested,

traffic will automatically be shifted to paths that do not traverse the congested link. If a

forwarding node disconnects, the capacity of the data source is automatically shifted to

other paths. As in BitTorrent, content integrity is protected by SHA-1 hashes of file blocks,

allowing recipients to detect data corruption.

3.3.7 Incentives

Persistent identities and long-term relationships provide a rich foundation on which to im-

plement different incentive strategies. Each OneSwarm client maintains transfer statistics

for each peer including total data uploaded and downloaded, maximum transfer rates,

control traffic volume, and uptime.

OneSwarm retains BitTorrent’s default tit-for-tat policy for making servicing decisions

among multiple virtual BitTorrent peers. This creates an incentive to contribute capacity

while downloading, improving swarm performance. Persistent identities among directly

connected peers provide an incentive to continue sharing data after downloads complete.

During periods of contention, the default policy is to allocate bandwidth among directly
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connected peers proportionally; each peer is assigned a weight equal to the ratio of their

net contribution and net consumption. A client improves its standing over time by partic-

ipating in the system whenever possible.

Forwarding data is zero sum. Data consumption from the incoming peer connection

is matched by contribution at the outgoing connection. At the granularity of individual

paths, it is difficult to reason about whether a particular forwarding connection is help-

ful for a peer’s long-term interests. If the outgoing peer often is on the path of a client’s

own transfers, forwarding will improve the transfer balance with that peer leading to in-

creased priority for subsequent downloads. But, if the incoming peer is a more useful data

source, forwarding will reduce long-term performance. To cope with this, OneSwarm uses

a default forwarding policy inspired by peering relationships between ISPs. If the incom-

ing/outgoing traffic ratio of a peer is approximately balanced or greater than 1 over the

long-term, forwarding is permitted. But, if this ratio is significantly unbalanced, forward-

ing is not permitted during periods of contention. This default policy can be overridden.

Users are free to assign static weights per-peer or forward data without regard to traffic

imbalance.

In practice, the default policy has proven sufficient to induce a surplus of forwarding

capacity in the system. I verify this in the evaluation (Section 3.5).

3.4 Security analysis

OneSwarm’s overarching security goal is to improve privacy by allowing users to con-

trol information disclosure. When sharing data with permissions, disclosure is limited by

familiar mechanisms: strong identities, capabilities, and end-to-end encryption. In this

section, we focus on analyzing privacy properties in the more challenging case of data

sharing without attribution.
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3.4.1 Threat model

Our goal is to be resistant to the disclosure of user behavior to an attacker with control

over a limited number of overlay nodes. Native BitTorrent is susceptible to just this attack,

enabling a small number of monitoring agents to infer the behavior of tens of millions of

users [86, 70]. Specifically, we assume that an attacker can join the network with a limited

number of nodes, monitor network traffic to/from its nodes, and generate, modify, and

delete OneSwarm overlay messages flowing through its nodes. The attacker can record

timing information about the messages it sends/receives to infer information about the

behavior of the rest of the OneSwarm network, and the attacker may spawn any number

of OneSwarm instances on its nodes. We do not attempt to guarantee privacy against

attackers that can sniff, modify, or inject traffic on arbitrary network links or attackers that

can seize the physical hardware of OneSwarm users, e.g., law enforcement.

OneSwarm assumes that users are conservative when specifying trust in peers, as trusted

peers can view files for which they have permissions. If trust is misplaced or a peer com-

promised, OneSwarm limits the resulting disclosure to only the trusted peers of the com-

promised nodes. This is in sharp contrast to private BitTorrent communities [107], where a

single compromised member can monitor all users of the service.

3.4.2 Attacks and defenses

In this section, we outline several potential attacks and quantify their effectiveness using

measurements of OneSwarm users in the wild. I restrict my attention to what I believe

to be the most likely attackers conducting the most likely attacks: one or more collud-

ing OneSwarm users bootstrapped via public community servers attempting to infer the

source of a data transfer. The discussion highlights the following aspects of the OneSwarm

protocol that significantly enhance user privacy.

• Persistent peering relationships limit monitoring power: In BitTorrent, peers are dy-

namically assigned, allowing attackers to become a peer of virtually everyone, given
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enough time. By contrast, OneSwarm peers are persistent, improving contribution

incentives and also limiting the ability of attackers to snoop from arbitrary locations

in the overlay.

• Heterogeneity of trust relationships foils timing attacks: OneSwarm users define links

as either trusted or untrusted and keep this information private. As the protocol be-

havior varies with link type, the combined use of trusted and untrusted links greatly

diminishes an attacker’s ability to infer path properties based on timing information.

• Lack of source routing limits correlation attacks: OneSwarm does not provide peers with

the ability to construct arbitrary overlay paths. Attackers could use this to correlate

performance with ongoing transfers. Such an attack is known to degrade privacy

in Tor, for example [108]. Individual clients have a limited view of the overlay and

cannot control path setup beyond directly connected neighbors.

• Constrained randomness frustrates statistical attacks: The uncertainty arising from ran-

dom perturbations in the protocol could be reduced through statistical analysis if

repeated probes yielded different draws. OneSwarm prevents such analysis by mak-

ing all random decisions deterministically with respect to a given query and link.

• Network dynamics limit value of historical data: While relationships in OneSwarm are

long lived, the end-to-end paths between senders and receivers change rapidly due

to churn and transient congestion. This reduces the window of opportunity for ad-

versaries to combine data from multiple observations in order to reverse-engineer

user behavior.

3.4.3 Timing attacks

Because data is forwarded through multiple intermediaries, an attacker seeking to deter-

mine whether one of its peers is the ultimate data source depends on determining whether
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the peer is relaying the data or not. For now, we make the optimistic assumption (from an

attacker’s perspective) that the attacker is directly connected to a data source and merely

needs to confirm this. In the absence of a direct peer relationship, attackers are unable to

learn the IP address of other clients, our notion of identifying a user.

By measuring the round trip time (RTT) of search / response pairs, an attacker can es-

timate the proximity of a data source. Usually, paths are lengthy, making the chances of

being next to a particular data source quite low. If the attacker has sufficient resources to

connect to nodes at many different points in the mesh, however, some of them might be

able to infer that they are near to or directly connected to a data source based on the low

RTT of response messages.

To frustrate this attack, OneSwarm artificially inflates delays for queries received from

untrusted peers. Recall that attackers bootstrapped via community servers are marked as

untrusted by default. All responses to untrusted peers are delayed by a random but deter-

ministic amount (computed based on the content hash and a persistent local salt value) in

order to emulate the delay profile of forwarded traffic from one or more hops away.

The RTT observed by an attacker over an untrusted link is similar to that of a data

source that is one or two overlay hops away and connected via low latency, trusted for-

warding links. In other words, the combined use of trusted and untrusted links provides

more possible explanations for a given delay profile than a design using untrusted links

only.

I now consider two experiments that illustrate the uncertainty associated with inferring

data proximity based on timing information. First, we measure the variability of latency

and path properties in practice using our PlanetLab deployment. Next, I consider the

effectiveness of this attack for the last.fm topology and workload.
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Figure 3.8: The distribution of search / response RTTs and the distribution of variance for
RTTs on identical overlay paths with more than 10 search responses. Even for identical
paths, variation in delay is significant.

PlanetLab

The feasibility of inferring behavior based on message timings depends on the length,

stability, and diversity of paths to the object. Lengthy paths have greater variability due

to mesh dynamics and network level effects. Similarly, the existence of a large, dynamic

replica set and/or many paths confounds inference based on search response RTTs.

To evaluate this, I configured a set of PlanetLab nodes running instrumented OneSwarm

clients to measure the RTT of search / response messages. As with would-be attackers, these

nodes are bootstrapped via public community servers. Each node monitors all search re-

quests it forwards, recording the RTTs of search response messages. For a given search, the

peer responding with the smallest RTT across all measurement nodes is the likely closest

hop to the data source. The stability of first responders for back-to-back search requests

indicate the feasability of this attack; i.e., is the first responder for a given search the same

as the first responder for the next search? With ten vantage points, 65% of back-to-back
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searches have the same first responder. Increasing the number of vantage points to 100

reduces back-to-back consistency to 63% as multiple attacker nodes at similar distance to

the source get responses within a small enough interval that traffic conditions on the paths

determines which attacker to first see the response. On the whole, it is difficult to reason

about the true source of search response messages since the ordering of responses is highly

variable.

The unpredictable ordering of search response messages is attributable to the naturally

large variations in message delays. Figure 3.8 summarizes the distribution of response RTTs

for more than 42 million searches, collected prior to the public release of a OneSwarm

client incorporating artificial delays. Large RTTs suggest lengthy paths; the majority of

search response messages are observed more than one second after forwarding their cor-

responding search. Even so, a variety of confounding factors make reasoning about path

length on the basis of delay difficult. OneSwarm is willing to tolerate lengthy queueing

delays at congested nodes (up to 7 seconds in our current implementation). Since search

response messages are interleaved with data traffic, response times may be controlled by

either 1) network delay, 2) lengthy overlay queueing delay at congested intermediaries,

or 3) the protocol-imposed propagation delay of search messages. These effects manifest

in significant variations in RTTs for even identical paths (i.e., responses carrying the same

path ID).

This data was collected before the inclusion of randomized search response delays in the

publicly available client. Thus the current implementation is likely to exhibit even greater

variability.

Trace replay of last.fm

To complement the PlanetLab study, I used trace data from the last.fm music website to

drive a large-scale simulation. A crawl of music playback histories and social relationships

yields a trace of the user behavior for 1.7 million users. I interpret last.fm friend links as
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Figure 3.9: Using a latency and topology oracle, the number of potential data sources
(x-axis) for a cumulative fraction of searches by attackers (y-axis). Even with thousands
of attackers and complete topology/latency information, search response delays do not
localize data sources.

trusted links in the overlay topology. For users with fewer than 26 friends, I add additional

untrusted links until that users reaches a total of 26 links. Object download histories deter-

mine object placement and popularity. As an estimate for link latencies I randomly assign

values provided by the iPlane project [58].

I use this trace to evaluate the timing attacks in the idealized setting of an unloaded

network and attackers with complete information regarding the overlay topology and the

network delay of every link. For varying numbers of attackers connected trough untrusted

links, I simulate 1,000 searches in the last.fm topology, sampled to match the measured

popularity of objects. For each search, we record the delay of the first response, and then

inspect the topology and link delays to compute the number of possible data sources as-

sociated with a given delay and vantage point. Figure 3.9 summarizes the results. Even

with complete topology and latency information as well as 250,000 vantage points, search

response latencies never localize a single data source, and only rarely localize to fewer than
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10 data sources.

3.4.4 TCP based attacks

Work by Prusty et al. [74] has suggested a TCP based attack that can be used to determine

if a neighboring OneSwarm peer is the source of a particular data object. The attack works

as follows: the attacker requests a object over the OneSwarm overlay. As the transfer starts

the attacker leverage optimistic acking [82] to trick the sender into sending at a rate that is

much higher than the senders link capacity, and thus much higher than the sender possibly

could forward traffic. If the attacker seems high packet loss it indicates that the peer is the

source as the source can read data from local disk at a high rate. If packets arrive at the

same rate regardless of acking policy, the peer is forwarding data from another peer and

can only forward data is it arrives from the previous hop.

OneSwarm is not susceptible to this attack when used with default settings due to

application level rate limiting. At first launch OneSwarm initiates a bandwidth capacity

measurement. The rate limit is then set to 80% of the measured capacity. Because the

application delivers packets to the kernel at this maximum rate, using optimistic acking

has no effect. Users changing their OneSwarm configuration to allow unlimited an upload

rate are vulnerable to this attack.

An alternative defense against this attack is to limit upload rate to the median down-

load rate for each peer, another is to switch to using a datagram based transport layer.

What Prusty et al. highlighted is that bandwidth, just like latency, leaks information, so to

foil this type of attack the software needs to control bandwidth as well as latency.

3.4.5 Collusion attack

Next, I analyze the case of multiple peers colluding to infer whether a directly connected

user is sharing a particular file. In this case, an attacker A sends a targeted search to target

T , receives a search response, and observes whether the search was forwarded to colluders
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Figure 3.10: An attacker, A, with C1, ..., Ck colluders tests if a target T is sharing a file by
sending a targeted search and observing a lack of forwarding.

C1, ..., Ck who are also peers of T . (This attack is illustrated in Figure 3.10.) Recall that

forwarding search messages is probabilistic. Each search message has a configurable prob-

ability, pf, of being forwarded to a particular peer. As a result, a lack of forwarding does

not definitively identify a data source; missing search messages may arise from random

chance. But, a lack of forwarding observed by many colluding peers is highly suggestive

of T sourcing the object. Assuming a fixed forwarding probability of pf and k colluding at-

tackers, Pr[Not source|response received] = (1−pf)
k. With just a few colluders, an attacker

can gain high confidence.

This attack requires both the attacker and colluders to be directly connected to the tar-

get. When matched randomly by a trustworthy public community server, the likelihood

of an individual attacker being assigned a specific target for a community server with N

members is nc
N , where nc is the number of peers returned for a single request. As a specific

example, consider achieving greater than 95% confidence in the identification of a data

source given pf = 0.5 for peers received from a community server.9 Achieving 95% con-

fidence in identification requires at least six directly connected peers (an attacker and five

colluders). For a community server with N users, the likelihood of achieving a particular

number of direct connections is given by the complement of a binomial CDF with success

9Low values of pf for community server peers are offset by the high amount of path diversity among them.
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Figure 3.11: The cumulative fraction of nodes whose behavior can be inferred with 95%
confidence (x-axis) by a given fraction of colluding attackers (y-axis). Even assuming
widespread use of public community servers, a significant fraction of colluding attack-
ers is required to infer user behavior.

probability nc
N .

In practice, the effectiveness of systematic monitoring depends on the resources of an

attacker relative to the population of a public community server. Privacy depends on this

ratio being small, and privacy-conscious users are free to decrease their forwarding prob-

ability (pf), avoid public community servers completely and rely on trusted peers, or re-

quest fewer peers than nc. Queries to trusted peers are always forwarded. Figure 3.11 pro-

vides several concrete examples of the relationship between exposure, forwarding prob-

ability, topology, and the number of untrusted peers. In these examples, pf = 0.5, and

I vary nc. Decreasing the maximum number of peers provided by a community server

makes compromising its users more difficult. But, I find in my evaluation that increasing

peers improves performance (Section 3.5).

Figure 3.11 also shows the privacy benefits associated with a mix of trusted and un-

trusted peers. For this case (Untrusted, 26 peers), I considered the vulnerability of clients
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in our last.fm trace when adopting a policy of peering with untrusted clients only when

they did not have nc or more contacts from their social network. Users with a large num-

ber of trusted friends are completely isolated from colluding attackers, shifting risk to users

with few/no friends that are forced to more heavily rely on untrusted peers.

3.5 Evaluation

To evaluate OneSwarm, I measure its performance and robustness both in the wild and

synthetically using trace replay. OneSwarm has been downloaded hundreds of thousands

of times to date, and I use a combination of both voluntarily reported user data as well

as instrumented clients to quantify OneSwarm’s real-world effectiveness at the scale of

thousands of users. To examine OneSwarm’s operation at even larger scale, I replay traces

of the social graph and usage behavior of more than one million last.fm users. In both cases,

the main result is that OneSwarm provides high throughput and availability in spite of the

overhead arising from preserving privacy. In support of this conclusion, I also measure

the effectiveness of OneSwarm’s protocol mechanisms and report usage and workload

statistics.

3.5.1 Real-world deployment

Methodology

Although many aspects of user behavior are (deliberately) obscured by designing for pri-

vacy, I draw on two sources of data to profile OneSwarm’s structure, performance, and

utilization in the wild. The first of these is voluntarily reported summary statistics from

more than 100,000 distinct users collected from a ten month period in 2009. These include

the total number of peers, the method used for key exchange, and aggregate data transfer

volumes.

The second source of data is instrumented OneSwarm clients running on hundreds

of PlanetLab [68] machines. Subscribing to several public community servers bootstraps
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Figure 3.12: Cumulative distribution of peers per-client. The upper half of the bimodal
shape is due to community server subscriptions. The wide range of the distribution
reflects the diversity of usage behavior.

connectivity for these clients, providing each with dozens of OneSwarm peers drawn ran-

domly from the user population. The PlanetLab nodes act as passive vantage points, mea-

suring the the background traffic generated by users. (This includes both data forwarding

and control traffic.) On average, these nodes relay more than one terabyte of data per day.

Overlay structure

Although many overlay links in OneSwarm are based on social relationships, the graph

structure is also influenced by the random matching of public community servers, as well

as the tendency for some users to import a large number of keys en masse from websites

maintaining active user lists.

Both of these effects are reflected in the distribution of overlay peers per user shown

in Figure 3.12. This distribution shows significant variations in connectivity. While some

users maintain hundreds or even thousands of peer connections, the median value is 22.

The sudden increase in mass near this value is attributable to community servers, which
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return 26 peers by default. Subsequent increases arise from users subscribing to multiple

community servers. For clients reporting data, 53% of peers are imported from commu-

nity servers, 46% are entered manually, with the remaining 1% of peers coming from LAN,

email invitations, or social network import. The small fraction of peers arising from pre-

existing social relationships reenforces the importance of bootstrapping connectivity via

untrusted peers, often from community servers.

Multi-path transfers

Unlike systems that anonymize traffic at the granularity of TCP connections, OneSwarm

tolerates out-of-order data delivery, allowing the use of multi-path and multi-source trans-

fers to improve performance and robustness. This is crucial in wide-area P2P environments

defined by heterogeneity, since an individual path is limited by the bandwidth capacity of

its slowest link. Given the highly skewed bandwidth capacities typical of P2P partici-

pants [44], the capacity of any single multihop path is likely to be low.

To confirm this, I compare the multipath transfer rates achieved between PlanetLab

nodes during overlay transfers to the performance of separately measured individual for-

warding paths. Both distributions are summarized in Figure 3.13. Multi-path transfers

average 457 KBps, while single path transfer rates average just 29 KBps. Among PlanetLab

nodes, routing single path transfers over Tor yields similar results; transfer rates average

20 KBps. The combination of transient congestion, bandwidth heterogeneity, and poten-

tially lengthy paths all contribute to the benefits of multi-path transfer, which is essential

for providing good performance and robustness.

Comparison with existing systems

Tor’s comparable single path transfer performance suggests that simply tunneling multiple

BitTorrent connections over Tor might suffice to achieve the benefits of multi-path trans-

fers. But, in practice, I find that OneSwarm significantly outperforms Tor. To evaluate this,
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Figure 3.13: A comparison of single and multi-path transfer performance. Because most
individual paths are slow, multi-path transfers are essential for achieving good perfor-
mance.

I compared the transfer performance of BitTorrent, BitTorrent over Tor, and OneSwarm.

Tor’s reliance on address translation at exit nodes precludes bidirectional connectivity and,

when used by a BitTorrent client as a tunneling agent, limits the benefits of swarming data

transfer by creating bottlenecks at nodes with bidirectional connectivity. To limit over-

head, Tor defaults to creating new paths only once every ten minutes. I modified Tor in

my experiments, instead creating new paths every ten seconds to increase the opportu-

nity for multi-path transfers. This configuration provides nearly a factor of 2 performance

improvement relative to the default, but aggressive path creation is discouraged as it in-

creases CPU load on intermediate routers. A further improvement would be to modify the

BitTorrent tracker and client to understand Tor Hidden Services [66]. This would allow

BitTorrent users to tunnel traffic through the core of the Tor network, avoiding the need

to transit congested exit nodes. As this modification would require significant changes to

both the BitTorrent client and tracker I did not attempt this. In addition to improving the

performance of BitTorrent over Tor this modification would have the additional benefit
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that it would allow all users, and not just a fraction, to have their privacy protected by Tor.

To measure the scalability of BitTorrent over Tor, I compare transfer performance when

50% of downloaders use Tor to performance when 90% of downloaders use Tor. In back-

to-back trials, I used each of these methods to download a randomly generated10 20 MB

file hosted at UW from a set of 120 PlanetLab machines. In each case, all participants joined

the swarm simultaneously and remained available as sources after completion. Figure 3.14

summarizes the results.

OneSwarm improves both the performance and scalability of data transfer relative to

Tor, which slows down median download times relative to OneSwarm by a factor of 1.9

and 3.4 when used by 50% and 90% of participants, respectively. BitTorrent clients masked

by Tor cannot communicate directly with one another, creating a scalability bottleneck as

the fraction of Tor users increases. Downloads are effectively serialized by the limited

capacity of a small number of detour nodes. The developers of Tor discourage BitTorrent

users from using the Tor network to anonymize their transfers. The Tor network already

suffers from congested exit nodes, and the Tor developers prefer that the capacity of the

network is used from interactive traffic, such as web browsing.

In addition to Tor, I also compared OneSwarm’s transfer performance to that provided

by Freenet, an anonymous P2P publishing system [20], and found that it provides per-

formance far short of either OneSwarm or BitTorrent/Tor. In Freenet, data distribution

is a two step process. First, data is published, which involves proactive caching at sev-

eral points in the mesh. Afterwards, client requests are serviced from this set of replicas,

with more popular files becoming more widely replicated. This differs from OneSwarm

where data users never store data persistenty unless they explicitly requested it. Despite

the benefit of caching, Freenet yields worse performance.

As in my previous experiments, I attempted to distribute a 20 MB file from a set of

10For each experiment I generated a new random file to ensure that no existing copies of the file were
available from other users in the network.
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Figure 3.14: Transfer performance of OneSwarm, BitTorrent, and BitTorrent/Tor on
PlanetLab. OneSwarm significantly outperforms existing anonymization systems and
is performance competitive with BitTorrent.

Freenet nodes running on PlanetLab.11 But, a large fraction of these transfers failed to com-

plete, and publishing of 20 MB files often failed. Reducing the file size to 5 MB improved

robustness, allowing me to compare Freenet and OneSwarm on the basis of transfer rate

rather than completion time. For the PlanetLab nodes, Freenet’s median transfer rate was

just 17 KBps, compared to a median 118 KBps achieved by OneSwarm. This rate does not

include publishing time, which would further reduce Freenet’s effective distribution rate.

Overhead

Despite performance improvements compared to Tor and Freenet, the results of Figure 3.14

suggest that OneSwarm incurs a performance penalty relative to BitTorrent. I attribute

this difference largely to the resource constraints typical of PlanetLab nodes rather than

a fundamental performance property of OneSwarm. OneSwarm transfers are encrypted

11I allowed these nodes to operate for several hours before my experiments in order to quiesce in Freenet’s
mesh.
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while BitTorrent transfers are not, and the OneSwarm transfer rate for (oversubscribed)

PlanetLab nodes is often limited by the available CPU rather than their network capacity.

To verify this, and to directly measure the influence of multihop forwarding on transfer

performance, a comparison is made between OneSwarm transfers 1) mediated by the over-

lay and 2) using a direct point-to-point connection between sender and receiver. (In both

cases, transfers are encrypted, providing an apples-to-apples comparison.) If the overlay is

not capacity constrained, the expected behavior is that both both direct and overlay trans-

fers, on average, have a similar duration. The experiments show this to be the case for

transfers conducted between PlanetLab nodes.

Figure 3.15 summarizes the ratio of the overlay and direct OneSwarm transfer times

between PlanetLab nodes. The figure is based on transfers between 75 pairs chosen ran-

domly while all other PlanetLab clients were disabled; i.e., the overlay did not benefit from

any forwarding capacity beyond that of its existing user base.

A ratio of 1.0 means that overlay and direct transfers took identical time, with ratio > 1

indicating a faster direct transfer and ratio < 1 indicating a faster overlay transfer. This is a

challenging case for OneSwarm as PlanetLab nodes are generally of higher capacity than

typical OneSwarm peers, which are often hosted from ordinary home broadband connec-

tions. Even without the addition of PlanetLab forwarding capacity, overlay transfer does

not impose a performance bottleneck in most cases. Some transfers are faster, and some

transfers slower, but the median ratio of overlay and direct transfer times, 0.94, suggests

that overlay forwarding is not a fundamental performance bottleneck.

Next I investigate how transfer performance in OneSwarm is affected by the number

of directly connected peers. The transfer measurements are repeated while restricting the

number of peers connected to each PlanetLab node to a randomly chosen value between 1

and 35. Performance increases with the number of connected peers. For example, increas-

ing the number of connected peers from 17 to 29 doubles median transfer performance.

But, returns are diminishing; a further increase to 35 peers improves median performance
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Figure 3.15: Comparing transfer times mediated by the OneSwarm overlay to direct
transfer. Averaged over many trials, overlay transfers are performance competitive with
direct point-to-point transfers.

by just 1%. The default value for the maximum number of peers provided by a community

server—26—reflects the tradeoff between client performance and resistance to systematic

monitoring (Section 3.4). Of course, this value is a configurable parameter.

I attribute the significant variability in a minority of transfers times (the tails of the

distributions in Figure 3.15) to the underlying unpredictability of PlanetLab hosts, which

vary greatly in their available CPU and network bandwidth, even over short time scales.

Variability in either affects the performance of encrypted transfer.

Utilization

Although the overlay benefits from a surplus of capacity in aggregate, individual paths

and individual nodes are often congested, motivating the use of congestion-aware search

and multi-path transfers. To confirm this, I examine each user’s reported utilization over

time. For the set of users reporting transfer volume statistics, I compute the maximum

transfer rate over all reported 15-minute intervals and treat this as the capacity for a given
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Figure 3.16: The distribution of client upload capacity utilizations over the course of
one day. Although most clients have excess capacity, transient congestion occurs at many
nodes.

IP address, computing utilization for all other 15 minute periods relative to this maximum.

These samples are summarized in Figure 3.16. Although average utilization is 49%, many

nodes are frequently bandwidth limited; node utilization is 95% or greater during 23% of

measured intervals. In short, temporarily overloaded clients are not uncommon despite

the overlay being over-provisioned on average.

3.5.2 Trace replay in the last.fm social graph

To evaluate OneSwarm’s operation at grater scale than its current deployment, I use the

last.fm trace data described in Section 3.1 to drive a large-scale simulation. While last.fm

is focused on music, making it slightly different than OneSwarm where any data can be

shared, I chose last.fm as it the only service I know that publishes both the social network

and the media consumption of its users. This data allows us to parameterize the simulator

with real values for both user interest and social network.

Unlike Section 3.4.3, I do not assign clients peers from community servers, and so
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the availability results should be taken as a lower bound of availability (additional paths

would increase redundancy), and the overhead results an upper bound (random shortcuts

would lead to shorter paths and reduced search propagation).

The main result is that relying solely on the social network is feasible for the mea-

sured last.fm workload; 94% of requests that can be fulfilled by the overlay (i.e., at least

one replica is online and reachable) result in successful downloads, and the majority of

transfers use the shortest paths available. In support of this main conclusion, I provide

additional analysis of the details of OneSwarm’s operation including search overhead, uti-

lization, sensitivity to node lifetimes, and variation in contention across overlay paths.

Methodology

The last.fm trace data drives a discrete event simulator with ten second timesteps. Each

last.fm user is interpreted as a OneSwarm user, friend links in the last.fm social graph cor-

respond to OneSwarm friends, and each unique song request made by a user is interpreted

as an object request in the overlay network. Searches are cancelled when 10 distinct paths

are discovered. Once a user has downloaded an object, the user serves as a replica.

I assume that all users have unconstrained download capacity, and each user is as-

signed an upload capacity limit drawn from a measured distribution of BitTorrent capac-

ities [44]. During periods of contention, capacity is split approximately equally between

flows and search messages are not forwarded.

Initially, each user serves as a replica for songs that user listened to during the first

week of the trace. I begin the trace playback at the outset of the second week. For all users,

I have a record of playback histories at the granularity of weeks. I translate these coarse-

grained playback histories to the shorter time-scales required for simulation using request

frequencies and session lengths measurements of 1,000 randomly sampled users from the

trace. At each point during trace playback, clients are added so as to approximate the

measured diurnal pattern exhibited by the sampled users. Users are randomly selected to
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join the system. Each user is assigned a session time (in songs to be played) drawn from the

distribution of sampled users. I consider a session to be active until back-to-back playback

of songs is separated by more than 30 minutes.

Object sizes are derived from the measured lengths of 81,805 songs listened to by the set

of 1,000 sampled users, and I assume a constant data rate of 128 Kbps. To exercise capacity

constraints, I increase this data rate to 1 Mbps for indicated trials; this rate is consistent

with high quality streaming web video.

To examine the impact of unavailable nodes in the social graph on object availability, I

compare trace playback 1) when all users observed in the last.fm trace are active (I refer to

this as “always on"), and 2) when users persist in the overlay for eight hours after playback

of the final song of their session. Eight hour lifetimes approximate typical peer lifetimes

in BitTorrent [38]. Relative to BitTorrent, OneSwarm users have an incentive to keep their

systems online (to accumulate credit from friends for later use), and less disincentive in

terms of privacy disclosure. “Always on” provides a bound on the benefit from these

incentives.

Each trace playback is primed with eight hours of simulation time, and I report results

for three subsequent hours of simulation time spanning peak load during the first day of

the second week of the trace. Simulation during peak load exercises capacity constraints.

I also performed a similar analysis of OneSwarm’s operation during minimum load, exer-

cising availability.

Object availability

A simple metric that distills the feasibility of overlay forwarding is the fraction of objects

requests satisfied; i.e., those that discover at least one replica in the overlay. During trace

replay, 11% of searches fail for the last.fm workload with both always on and 8 hour life-

times during peak load. During simulations spanning the time period of minimum load,

the fraction of failed searches increases to 24%.
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In the simulation, OneSwarm searches can fail for any of three reasons: 1) the song be-

ing requested occurred only during the second week of the trace (no replicas exist), 2) all

available replicas are offline, or 3) no path exists to the query source from available replicas

due to either overloaded or unavailable nodes along the path. Object requests of the first

type (no replicas exist) account for 6% of total demand in the trace. These searches are cer-

tain to fail and correspond to the songs listened to by just one last.fm user in the trace. This

implies that the remaining cases (capacity overload and/or replica unavailability) cause

search failures in just 5% of cases during peak load and in 18% of cases during minimum

load. This level of robustness is surprising given that most nodes have few friends, most

songs have few replicas, and average path length between random users is high. Several

workload properties ameliorate these challenges. First, although users have few friends,

even these users are frequently connected to high degree nodes, providing high path diver-

sity. And, although most songs have few replicas, most requests are for popular objects for

which many replicas exist (along many paths). This also compensates for typically lengthy

path lengths among users. Users with few friends experiencing poor performance can add

untrusted peers from a community server to improve their connection with the overlay,

shorting paths and improving availability.

Overhead

OneSwarm discovers paths to replicas by flooding search messages among friends. Search

overhead is computed as the fraction of control messages making up overall traffic. For the

last.fm workload with always on lifetimes, overhead is 27% of total data traffic. Assuming

the increased data rate of video playback, while keeping the request pattern the same,

reduces the fraction of overhead to 6%. Overhead with 8 hour lifetimes is higher than

when peers are always on since the relative low density of the graph makes it difficult to

find the 10 unique paths required to cancel the search. For peers with 8 hour lifetimes, the

overhead is 77% for the last.fm workload and 43% for the video workload. Although large
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Figure 3.17: Path length stretch for various workloads. For the last.fm workload, the
majority of transfers use shortest paths through the overlay. As data volume increases,
capacity constraints induce stretch.

both fractionally and by total volume, recall that search messages are forwarded only when

a node has idle capacity. As a result, capacity consumed by control traffic is not capacity

lost during data transfers, assuming unconstrained downlink capacity.

An alternative search strategy trades worse search response latency for a reduction

in overhead. Because search messages are forwarded only after a 200 millisecond delay

per-hop whereas search cancel messages are forwarded without delay, OneSwarm clients

can perform the equivalent of iterative deepening search in the overlay by issuing search

queries followed by increasingly delayed search cancel messages. For popular objects with

many replicas, this approach discovers replicas quickly. But, if lengthy paths are required,

several iterations (and several seconds of delay) may be required to discover replicas.

Stretch

In addition to promoting availability by discovering potentially rare replicas, flood-based

search also typically discovers short paths. When objects are large, trading control traffic
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for short paths is preferable; redundant forwarding of bulk data consumes traffic equiv-

alent to an enormous volume of relatively tiny control messages. I measure how often

OneSwarm discovers (and can use) the shortest available paths by computing the path

length stretch for transfers during trace replay. I compute stretch as the average path

lengths to all replicas used during a file download weighted by the fraction of total data

attributable to a given replica. The distributions of stretch for various workload conditions

are shown in Figure 3.17.

The last.fm workload with always on lifetimes is the best case, assuming no community

servers. Path diversity is high and aggregate demand is much less than aggregate capac-

ity. In this case, OneSwarm uses shortest paths for 55% of transfers with an average path

length from source to replica of 4.8. 95% of objects have a stretch 6 1.2. Path diversity is

reduced when lifetimes decrease (8 hour, average path length 5.1); this increases stretch. In

both cases, a small fraction of requests traverse paths with frequent contention, increasing

stretch. Increased data rate (1 Mbit web video) increases stretch as well, but this increase

is attributable to contention for bandwidth rather than node unavailability. Even with al-

ways on lifetimes, just 28% of video transfers use shortest paths (average path length 5.8).

Reducing lifetimes decreases path diversity. This means a larger fraction of downloads

use the shortest available path, but this path is longer than the shortest path available with

always on lifetimes.

Contention

One measure for the load on the OneSwarm overlay is the contention for capacity at each

node. I measure contention as the ratio of simulated download time and the download

time if no concurrent transfers occur along all transfer paths. I call this the slow-down

factor. If a given transfer is the only active transfer on its set of paths, this ratio is 1.

The distributions of contention ratios for the simulated trials are shown in Figure 3.18.

For the last.fm workload with always on lifetimes, contention is rare; 73% of transfer paths
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Figure 3.18: Slowdown due to contention. Each line gives the cumulative fraction of
transfers (y-axis) with a given slow-down factor (x-axis) or less.

are not contended throughout the transfer. As expected, contention increases when either

lifetimes are reduced (capacity and path diversity decrease) or data rate increases (capacity

constraints influence performance). In the case of 8 hour lifetimes, many paths have high

contention ratios since there are fewer paths available. When contention is high, stretch in-

creases as core nodes shed load, leading to longer paths. Load balancing over longer paths

of more highly utilized nodes can yield substantial slow-down for many transfers. Note

that Figure 3.18 does not show slow down factor > 20. With 8 hour lifetimes 9% of transfers

fall into this category for the last.fm workload and 12% for the web-video workload.

3.6 Summary

Although widely used, currently popular P2P file sharing networks expose users to silent,

third party monitoring of their behavior. To address this, I have built OneSwarm, a file

sharing system designed to reduce the cost of privacy to the average user. With novel tech-

niques for efficient, robust, and privacy-preserving lookup and data transfer, OneSwarm



73

provides users with flexible control over their privacy by defining sharing permissions and

trust at the granularity of individual data objects and peers. The OneSwarm client is pub-

licly available for download on Windows, Mac OS X, and Linux, and it is in widespread use

around the globe. Measurements of the live OneSwarm deployment shows that it delivers

on its promise: OneSwarm privacy-preserving downloads are performance competitive

with BitTorrent and substantially outperform existing anonymization networks.
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Chapter 4

UNBLOCK

In this chapter I describe the design of Unblock, a system for defeating Internet censor-

ship. Unblock is based on an overlay constructed from an augmented social graph. Data is

encrypted and forwarded in the overlay to an exit node located in a political domain where

the requested data is available. A key design point is that trusted social links protect in-

dividual participants from exposure to adversaries. In addition, Unblock implements a

novel method for introducing additional links in the network graph which improves con-

nectivity without a significant increase in vulnerability. To improve performance, Unblock

use an adaptive data transport technique that minimize latency and improve throughput

compared to Tor. With measurements of a prototype implementation, and simulations of

the system at scale I demonstrate its practicality for web traffic workloads.

My goal is to develop a system that is resistant to a censoring adversary, without re-

quiring changes to the underlying Internet infrastructure. In the threat model for Unblock,

a censor has control of some number of the physical links in the network, and can block

communication with arbitrary IP addresses across these links. A censor can also try to

join the system in order to discover the locations of users. Thus, upon discovery of any

user’s operation in the system, a censor can block further access to that user’s IP address

from within its administrative domain. Censors cannot read the contents of the encrypted

traffic and users can (and often do) change IP addresses. Furthermore, the censor is not

willing to disable all encrypted traffic to avoid impact on legitimate applications such as

VoIP, gaming, and media streaming.

In order to demonstrate that Unblock is practical for wide-spread use I have imple-

mented it as an extension to OneSwarm. I evaluate the performance of the prototype in
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controlled testbed settings and measure its ability to perform web requests under various

configurations. I also evaluated the social network augmentation techniques using a simu-

lator to measure the implications of the design decisions at scale. My measurements show

that Unblock provides high availability and improved performance without introducing

any significant vulnerabilities.

4.1 Challenges in building blocking resistant services

There has historically been two approaches to building overlay-based services. In this sec-

tion, I consider the suitability of these approaches to building robust censorship-resistant

overlays, the challenges that arise given a censoring adversary, and the inherent structural

properties of the two approaches.

• Public open-access overlays: These systems are characterized by (a) their use of a

centralized management system that publishes information regarding public relays

which any user can utilize to route their traffic, (b) any relay can be used by any client

to construct a circuit. These include privacy systems such as Tor [27], Ultrasurf [96],

and Freegate [36], as well as open proxies and VPNs, which are also used to evade

censorship [41].

• Social network-based overlays: In these systems, the identity of participating users

remain hidden and traffic is routed through connections that are bootstrapped on

preexisting trust. In addition to OneSwarm (see Chapter 3) these include systems

such as Ostra [63] and Freenet [20].

I discuss the strengths and weaknesses of the two types of overlays in the remainder of

this section.
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Figure 4.1: Number of observed censorship episodes against Tor (i.e. blocking Tor when
it was previously not blocked). Surprisingly, Tor is blocked in many countries.

4.1.1 Ease of blocking open-access overlays

Open-access overlays are perhaps the most publicized approach to anti-censorship. At

the heart of the overlay is a number of open proxy machines that can be used to forward

traffic to a desired destination. Traffic is encrypted at each hop to protect its content, and

forwarded over multiple hops to obscure the final source and destination. When the traffic

reaches an exit node, it is forwarded to the intended destination. Several countries have

been observed to actively censor access to open relays [92].

Fundamentally, open access systems are hindered by the fact that bootstrapping of new

nodes requires the distribution of the public addresses of these nodes. As mentioned in

Section 2.3.1 Tor provides a centralized service that returns a certified list of relays making

it trivial for a censor to block access to this list of addresses [26].

While countries that actively block Tor are well known [26], a surprising number of

countries occasionally block Tor. Figure 4.1 shows the results of an experiment that mea-

sured Tor access in 152 countries over the period from January 2010 to November 2011
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Figure 4.2: Number of Tor users from China over a 60 week time period. Usage spikes
twice when new relays are added, but bottoms out when the new relays are blocked.

using a methodology developed by the Tor developers [24]. The number of clients that

connected to each of the Tor directory servers were aggregated into two week periods by

country. These totals were compared with the preceding period. Finally, these ratios were

normalized to the total number of Tor users around the world for the 2 corresponding

periods. The two week period acts as a low pass filter, minimizing variations in usage

and overcoming weekly patterns. By normalizing against the global Tor user count, the

analysis also accounts for overall trends in Tor usage.

A censorship episode is defined as an event where the Tor usage in a country where Tor

usually works drops more than 4 standard deviations below expectation. I was surprised

to find that out of 152 countries, 49 countries had experienced an episode of such cen-

sorship during the 2 year period, and several experienced multiple such episodes. These

results imply that while the governments of many nations are debating what should be

censored, many networks are already equipped with devices capable of censorship on a

nationwide scale.

In Figure 4.2 shows the number of Tor users from China, a country known to actively
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Figure 4.3: Number of exposed bridge nodes vs number of PlanetLab vantage points. By
launching a Sybil attack from multiple locations, we can discover the number of bridge
nodes and the IP address of each. A censor can use a similar technique to block Tor
bridges.

block Tor, over a 60 week period. I found that Tor was essentially blocked and ineffective

for the majority of the time. During the middle of the experiment, there were two spikes

in usage when new relays were added. However, each instance was short lived as the

new relays were blocked and usage subsequently dropped. Other measurement initiatives

have reported similar data [92].

In response to censorship, open-access overlays may add new relays to the system.

These relays are also vulnerable to blocking. Recently, Tor has added semi-secret relays

called bridge nodes, which are disclosed to users in a limited, decentralized fashion. How-

ever, once a bridge node’s IP address is discovered by a censor, it can be blocked. An

adversary can use the same protocol to query the members of the overlay as the intended

users to easily identify relays participating in the system. Even if systems use decentral-

ized methods to limit the number of nodes exposed to any particular user, the availability

of large numbers of hosting services makes it easy for crawlers to obtain node identities
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from a diverse set of IP addresses. In Figure 4.3 show a crawl of the Tor bridge discovery

mechanism from multiple vantage points on PlanetLab. I found that by requesting bridge

nodes from multiple locations, I was able to discover nearly 240 bridge nodes in Tor and

their IP addresses. One could imagine a censor being able to use the same technique to

discover and block new bridge node IP addresses to render this technique effectively use-

less. In fact the Chinese government performed this exact attack and quickly discovered

all bridge nodes given out based on the source IP address. Shortly after they created a large

number of gmail accounts and crawled all bridge nodes given out based on gmail source

address [92, 26]. Tor employs a third method for distributing bridge nodes using social

relations ships between Tor developers and activists. The activists then spread the bridge

node IPs in their own personal networks. Giving out bridge nodes based on direct social

links decreases the rate a censor discovers them, but limits the reach to a few select users.

If these users in turn share bridge node locations with their friends it is likely that the cen-

sor will eventually learn of the location. The effectiveness of this method is encouraging

for Unblock. Especially since Unblock provides a safe way for users to share overlay links

crossing the censorship domain with their friends by only exposing the valuable cross cen-

sorship domain link to a few users. This limits the number of nodes that has to know the

location of the cross censorship domain link, decreasing the probability of revealing it to

the censor.

4.1.2 Social Network Based Overlays Have Poor Connectivity

Social network overlays have been explored in the past to improve trust and security in

network systems. For example, Ostra [63] was a system that used social networks to im-

pose a cost on unwanted email, and OneSwarm provides anonymous P2P file-sharing us-

ing social network routing. However, building a censorship-resistant system using a social

network overlay presents new challenges. Particularly, routing traffic over a social net-

work introduce additional latency as data is forwarded over multiple hops. While this is
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not an issue for latency insensitive services such as file sharing, it poses a challenge for

interactive web services.

In social network based overlays, users explicitly define peers that they trust and all

traffic is routed over the formed social network. Users can volunteer to serve as exit nodes

in a particular geographic domain. For example, a user in the US can serve as an exit node

to provide access to US websites for the users of the system. Data is forwarded from the

source to the destination along a sequence of social network connections.

Because each user is only exposed to the neighbors that it explicitly defines as trusted,

social network overlays conceal the identities of participants. However, routes in the the

network are constrained to naturally formed social links and no centralized service has the

ability to shape the overall topology of the network. Due to this constraint, these over-

lays must cope with unfortunate network topologies that arise from the underlying social

connections and the inherent churn in the system.

I analyzed network properties of a number of social networks, including Youtube,

Flickr, LastFM, LiveJournal, and Foursquare using datasets collected by [62, 80]. Irrespec-

tive of the size of the overall social network, most nodes in these networks have at most a

handful of connections to other peers and a large number of users have only one social link.

Few links translates to poor path diversity in the best case, and complete disconnection in

the worst case. Compounded with the issue of churn and limited uptime of end hosts,

the existing topology of these graphs would ensure poor performance for the majority of

users.

I used simulations to measure the availability of paths through these social networks

under varying churn. The results below examine the ability to obtain a working path to an

exit node when 10% of participants serve as exit nodes. Figure 4.4 shows the results of this

experiment. The availability of working paths is highly susceptible to churn. Due to the

stringy nature of these social networks, churn easily disconnects some nodes entirely from

any exit node, lowering the total connectivity to exit nodes from 100% to around 50% for
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Figure 4.4: Fraction of nodes with paths to exit nodes on different social network
datasets for varying node uptimes and with 10% of the nodes being exit nodes.

typical node uptimes seen in peer-to-peer systems [89, 37, 78, 55]. There are other unfor-

tunate consequences of a constrained network topology. First, as nodes fail, the remaining

nodes must route around them. This would result in longer paths to exit nodes, and higher

latencies unsuitable for interactive web access. Second, the constrained network topology

results in hotspots, especially under churn. In the simulations, a small set of nodes are on

hundreds or even thousands of paths making them critical to the success of the system.

The performance of these networks is thus limited by the availability and bandwidth of

this small set of nodes, thus reducing overall system robustness.

4.1.3 Transport Inefficiencies in Overlay Networks

In general, overlay networks have suboptimal performance as data is transferred sequen-

tially in and out of the Internet core multiple times in order to traverse the overlay, resulting

in higher latency and greater possibility of traversing congested links. The Tor network

exemplifies these issues, and it also suffers from over-subscription and poor congestion

control[93, 28].
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Figure 4.5: Slowdown introduced by Tor when loading popular domains in January
2012.

Measurements of page load times over Tor compared with “normal” direct connections

from a set of 17 geographically diverse PlanetLab nodes exemplifies this. As can be seen

in Figure 4.5, page load time for popular sites increase 6 − 17X when web pages are loaded

over Tor. Figure 4.6 shows the same experiment for the Alexa top 100 sites [3]. The median

page load time increases from 2.3s to 12.6s1.

The performance issues of overlay networks are not fundamentally limited by the use

of end hosts or low bandwidth nodes in the network topology. Peer-to-peer systems like

BitTorrent offer excellent performance, and can transfer large amounts of data even though

the majority of participants have low upload bandwidths [70]. Forwarding traffic over

multiple end-hosts limits the throughput to the slowest link. Recall measurements of

the OneSwarm overlay in Section 3.5.1. End-to-end throughput in the overlay averaged

29 KBytes/s leading to poor performance unless multiple paths are used. The motiva-

tion for choosing multi-hop paths in overlay networks has traditionally been two reasons:

1Roughly 20% of Alexa top 100 domains did not load successfully during the experiment. The reasons
include: no main page (e.g. googleusercontent.com, bp.blogspot.com), blocking either by institution (in the
case of pornography) or a censor (e.g. taobao, qq). Many Chinese sites are not accessible either from Tor, or
PlanetLab.
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Figure 4.6: Load times for Alexa’s top 100 domains in January 2012. Measurements are
averaged from 17 geographically diverse PlanetLab nodes.

(a) anonymity is gained through indirection and aggregation and (b) application agnostic

transport needs to guarantee in-order, end-to-end delivery. These reasons, not the avail-

able resources, are the major contributor to why systems like Tor are slow.

Location is an important factor in overlay path selection since it often is correlated

with link latency. Nodes located nearby geographically can likely communicate with low

latency and be connected by relatively few intermediate routers. One of the benefits pro-

vided by social network-based overlays is that the majority of social links connect nodes

which are geographically close [80]. In contrast, many open access overlays like Tor do

not use location as a factor in path selection. This increases the average hop latency, and

contributes to high end-to-end latencies in the overlay.

Unblock aims to combine the security, concealing, and locality properties of routing

over social networks, with the many innovations in transport optimizations of open access

overlays in order to build a well-performing blocking-resistant anti-censorship system.

The following section will describe the various mechanisms used to achieve the desired

properties.
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4.2 Protocol design

Unblock aims to combine the security, privacy, and locality properties of routing over social

networks with the more robust connectivity properties of open access overlays in order

to build a high-performance blocking-resistant anti-censorship system. This section will

describe the various mechanisms used to achieve the following desired properties.

• Availability: The system should provide high levels of service availability and be

capable of constructing usable overlay paths despite churn or sparsely connected

regions in the underlying social network.

• Security: The system should be able to withstand various attempts to block commu-

nications or disrupt the normal operations of the overlay. In particular, the system

should minimize the impact of infiltration attacks and conceal the identities of a large

fraction of participants to ensure smooth operation.

• Usability: Users might use the system to circumvent censorship, achieve anonymous

communication, or to avoid surveillance. The system should be able to handle dif-

ferent use cases, and achieve higher service quality made possible by the larger user

base.

• Performance: The system should provide sufficient performance to enable interac-

tive web access. Further, the overhead should be acceptable to users attempting to

avoid surveillance in addition to those accessing otherwise censored content.

4.2.1 System Overview

Unblock achieves the desired properties by combining a set of techniques that are outlined

below.
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Augmenting the social graph: Relying on social network links is insufficient for users

with few social connections. This is especially problematic for new users joining the over-

lay with a single initial trusted friend. To decrease the dependence on the initial peer, to

increase connectivity for poorly connected users, and to provide connectivity when churn

systematically reduces the availability of overlay routes, Unblock augments the social net-

work with a random overlay network that allows users with few connections to (optionally)

add additional peers located at random locations in the overlay network. In addition to

providing the user with redundant connectivity to the overlay, these untrusted links pro-

vide shortcuts to remote locations in the overlay. This improves availability in the face of

node churn, but potentially exposes the system to adversarial attacks. Details on how to

add untrusted links while limiting the disclosure of overlay relay identities to adversaries

is discussed in Section 4.2.3.

Resilient communications: The system should minimize its reliance on external services

with the potential to be blocked. For instance, the system should not use an external DHT

as such access can be easily blocked by the censor. Instead, the system and its operations

should be self-contained to maximize blocking resistance.

A peer joins the Unblock overlay by exchanging bootstrapping information with an

existing peer. This information includes the current network location of the peer, a one-

time use capability authenticating the recipient during initial connection, and a public key

allowing the recipient to verify that the remote side is who they claim to be. Returning

peers are able to connect to the overlay as long as a discovered peer remains at its previ-

ously known network location. Once connected to the overlay, a new node can discover

remaining peers’ current addresses through an overlay-internal DHT; each peer maintains

encrypted entries containing their current IP address and port in this overlay, which can be

decoded by authorized peers. Discovery and communication with exit nodes is discussed

in Section 4.2.4 and connection setup is detailed in Section 4.2.6.

High performance overlay transfers: To encourage user adoption, the system needs to
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minimize performance overheads associated with interactive web browsing. User satis-

faction degrades quickly as page load latencies increase. On the other hand, small perfor-

mance improvements can increase adoption and usage, which in turn provide greater path

diversity – further improving performance.

Nodes in Unblock employ a hybrid transport layer that uses both SSL-over-TCP and en-

crypted UDP channels. The reliable SSL connection is primarily used for control traffic and

as a fallback where UDP is blocked by firewalls.2 Data is preferably transported over UDP,

since forwarding multiple independent flows within one TCP connection has significant

issues with congestion from large flows causing packet-loss and retransmission delays for

all flows in the stream [76]. Handling congestion at the overlay-flow level allows Unblock

to use novel techniques such as back-pressure based flow control and fair-queueing to en-

sure low latency and fair bandwidth allocation. The details of the transport are discussed

in Section 4.2.5, and evaluated in Section 4.3.1.

Providing low-latency overlay connectivity over a chain of unreliable and slow end-

hosts requires the endpoints to be dynamic in their behavior. To improve performance,

Unblock uses multiple parallel overlay paths when available. Low latency flows benefit from

redundant data transfer, which ensures robustness against churn, intermittent queueing,

and packet loss on any single path. For high bandwidth flows the data is striped across

paths to improve throughput. Unblock can dynamically adjust how redundantly data is

transmitted depending on the current bandwidth characteristics.

Table 4.1 provides a road map for the rest of this section. Next I describe the threat

model, and then expand on the design outlined above.

4.2.2 Adversaries and threat model

I expect the Unblock network to be under continuous attack by adversaries. I assume that

the adversary is able to block DNS and IP addresses. I also assume that the adversary

2SSL, especially on port 443, is rarely blocked due the popular use of HTTPS.
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is able to infiltrate a limited number of social links giving it access to the overlay. From

nodes it controls it is free to generate, modify, and delete messages flowing through its

nodes, record timing and other information, and correlate traffic from multiple nodes. I

call nodes controlled by an adversary Moles, as they infiltrate the social network to spy

and wreak havoc in the network.

Importantly I assume that the adversary is unable to break cryptographic primitives,

seize client machines, or otherwise intimidate users into revealing information about their

friends. I realize that these assumptions are insufficient for users in some countries but I

believe that it still can provide a valuable service for a large number of users under varying

levels of Internet censorship. Users in countries where authorities routinely round up and

torture citizens circumventing Internet censorship should not use Unblock.

4.2.3 Adding Untrusted Links

In order to improve network connectivity, lower the diameter of the network, and to bring

clients closer to the exit nodes, Unblock provides a mechanism for to users for adding ran-

dom, untrusted shortcut links. This mechanism is necessarily limited, since any discovery

mechanism may be abused by an adversary to discover the IP addresses of participants.

Existing systems such as SybilGuard and SybilLimit could be used to discover short-

cut links, bounding the number of connections added to sybils from any particular user

to be proportional to the number of attack edges. However, such a system could expose

many more users in the process. Against a censor adversary, what is desired is a discov-

ery method that bounds the number of nodes exposed to moles to be proportional to the

number of attack edges.

In Unblock, when a node wants to find additional shortcut links, it initiates a shortcut

discovery walk through a network of exclusively trusted social links, and returns a subset

of nodes along the path. Figure 4.7 provides an example. New shortcut connections to

these nodes are labeled as untrusted and are not used for subsequent walks. Shortcuts
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Figure 4.7: Example of a shortcut discovery walk to identify new shortcuts. Consider a
walk initiated by X. It passes through A, E, D, G, H, I, and F. Nodes A, G, I, and F have
degree less than Rc = 4, and return themselves as eligible shortcut candidates.

are used exclusively for routing data traffic. The shortcut discovery walk is designed in a

way such that it returns the same deterministic set of nodes during an epoch, and tries to

minimize changes between epochs.

An epoch defines a period of time, Re, where the majority of users in the system have

changed IP addresses. This period can be on the order of weeks or even months, depend-

ing on the underlying network. At the start of the epoch, each node will take a snapshot of

its current trusted links, hash each with a local secret, and use these as the set of ID’s in a

consistent hashing [47] keyspace. The resulting keyspace is used to determine where to for-

ward incoming walks. The outgoing link is chosen as the link preceding the incoming link

in the keyspace. The keyspace is fixed for the duration of an epoch to ensure determinism

within an epoch despite changes to the set of trusted links.

Each node makes a local boolean decision ail, whether to expose itself to a shortcut dis-

covery walk request. A node with degree greater than Rc will hide itself from all requests
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and simply forward the request to the next node. This parameter is chosen in order to pro-

tect high-value nodes in scale-free social networks. Previous work with friend-to-friend

overlays have shown that capping the total connections to a user can improve aggregate

bandwidth [45]. All other nodes will expose themselves with probability Rp and walks

only proceed for a maximum of Rd steps. Re, Rc, Rp and Rd are system-wide parameters.

These shortcut relationships are timed out after a certain period of time.

When node x initiates a shortcut discovery walk along the path i ∈ {1, 2, 3 . . . Rd}, it

takes the following steps:

1. Node x will send the walk request along link lx

2. Each node along the path will forward the request along a deterministic path,

{l1, l2, l3 . . . lRd
}

3. On the return path, each node, i, will include an entry in the walk result set if ail =

True. An entry consists of the node’s public key and IP address, signed by the node’s

private key.

In the midst of churn, these walks quickly become disconnected, preventing nodes

from exploring their full set of shortcuts. This issue is avoided by caching partial shortcut

results in the DHT in encrypted per-link mailboxes. When nodes come online, they can

update these partial results.

The shortcut discovery method provides a number of useful properties:

• Local random decisions, li and ail are seeded using only the local node ID, and do

not depend on the hop count. Thus repeated queries to the same node do not reveal

any additional information, even if those queries contain different TTL values or are

initiated by nodes further downstream.

• Irrespective of which mole initiates the random walk, the set of nodes exposing their

identities is fixed for a given attack edge. Thus, any censor’s ability to find par-
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ticipants will be limited by the number of attack edges it can form, as well as the

parameters Rd, and Rp.

• The random walk hides friendship information as long as Rp is chosen to be a rela-

tively small value. A censor thus has limited ability to determine network topology

using the shortcut discovery mechanism.

• The core of the network consisting of high-degree nodes are protected from being

revealed, while focusing on improving path diversity from low-degree nodes

• Random walks tend to linger around areas of low connectivity. This property implies

that shortcuts help the users who need it the most. This property is evaluated in

Section 4.3

4.2.4 Accessing the Internet through exit nodes

Unblock uses exit nodes to create a bridge between the overlay network and the public

Internet. Exit nodes can either provide global Internet connectivity or restrict transit to

a small set of services. The user running the exit node is free to specify the exit policy

of their node. Running an exit-node with global connectivity has been problematic for

some Tor users3, thus motivating a design with a more expressive policy. In Unblock, a

user can opt to only provide access to certain domains (e.g., only access to wikipedia.org,

twitter.com, google.com, and nothing else), thereby reducing the risk of abuse. Service

providers that wish to improve access to their own site can run an “exit” node within

their own network providing access to only their own service. Such restrictive policies

are unlikely to cause trouble for the operator while still adding valuable capacity to the

network. The hope is that many users will be willing to contribute bandwidth as long as

the potential consequences are minimal.

3Law enforcement sometimes misattribute traffic from a Tor exit node to the owner of the node.
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In order to contact an exit node, a peer must first know it exists. In Unblock, each exit

node is identified by a public key, along with a recent announcement potentially signed by

a Unblock directory service.4 The announcement asserts which services are accessible from

the node, and where the node is located (e.g., country or ISP domain). Signed announce-

ments imply the signer has verified the claims in the announcement, which results in client

preference towards those nodes, but announcements which are unverified can also partic-

ipate; these exit nodes will however be used only when there are no routes to exit nodes

with signed announcements.

Given the augmented overlay structure of Unblock, there are often a large number

of possible paths to choose from when routing to an exit node. The goal of the routing

protocol is to discover paths that: (a) minimize end-to-end latency, (b) discovers multiple

parallel paths when available, and (c) is resilient to node failure/churn.

The approach is a hybrid path announce / on-demand path discovery protocol where

an announcement from the exit node creates a minimum latency routing tree. The on-

demand path discovery allows a node to find multiple branches in the tree, creating a

set of alternative paths that can be used to communicate with the exit node. Figure 4.8

provides an example. The protocol maintains the routing tree using periodic refreshes.

The discovery protocol is initiated on demand when a node initiates a connection to an

exit node.

To route Internet traffic over Unblock the user configures their web browser to use a

SOCKS5 proxy started by Unblock on the local machine. This proxy transparently moni-

tors web-requests and tunnels them to the appropriate exit node. The policy for choosing

which exit node to use for a particular target is determined by the the capability of the exit

node, the overlay performance to the exit node, and the local policy on the client machine.
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Figure 4.8: Example of how paths to exit nodes are found. Path announcements create
a minimum latency routing tree. On-demand discovery finds alternate paths. In this
example 3 additional paths are found.

Path announcements

Exit nodes announce their existence to the network. When nodes receive a previously

not seen announcement they immediately forward the announcement to their neighbors.

The return path of these announcements creates a minimum latency routing tree that is

used when communicating the exit node. Announcements contain a timestamp, a nounce,

hash of the public key of the exit node, optionally a set of exit node properties5, a solution

to a computational puzzle (more on this in Section 4.2.7), and a signature ensuring the

announcement indeed is from the exit node.

4The purpose of the directory system is described in 4.2.7. The directory service is replicated, e.g., on
PlanetLab nodes, to ensure higher availability and reachability.

5Such as region and domains reachable through the node.
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On-demand multi-path discovery

While the minimum latency routing tree provides the lowest latency path to an exit node,

link and path properties in Unblock can change rapidly. Instead of continuously trying

to keep the routing tree up to date, Unblock instead makes the nodes capable of handling

a slightly out-of-date routing tree. The approach relies on the fact that while a branch of

the tree can become slow or even disconnected due to issues at an upstream node, other

branches in the tree not containing that node are likely to be unaffected. When initiating

a connection to an exit node the client will initiate a limited scope path discovery, asking

its neighbors if they have an alternate path to the exit node. A path is acceptable if the

neighbor’s next hop is neither the current node nor the next hop of the current node. This

process can be repeated by the neighbors if the number of found paths is low.

4.2.5 Transport protocol

Forwarding data across across the overlay has both performance and reliability implica-

tions that affect the design of the transport layer. First, forwarding traffic over a multi-hop

overlay path limits the throughput to the slowest link even though there might be spare

capacity at other intermediate nodes and along other paths. Second, path conditions could

change either due to churn or temporary bursts of traffic through congested nodes. Third,

traffic between pairs of overlay nodes can represent multiple independent circuits gener-

ated by different clients in the system. If these different flows are multiplexed on to a single

reliable TCP connection between adjacent relays, the resulting interference could result in

suboptimal performance for all flows traversing the link.6

The transport protocol in Unblock addresses the above set of issues using the following

techniques. First, instead of using hop-by-hop TCP connections, Unblock use datagram

based transport at each overlay hop and end-to-end congestion control across the entire

6Prior studies have diagnosed these issues in the context of Tor and proposed backwards-compatible fixes
to Tor, while retaining the basic per-hop TCP transport and single path transfers [28, 4, 76].
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overlay path. This minimizes the interference between flows that share the same overlay

hop. Second, the payload is transported over multiple overlay paths to overcome bot-

tlenecks and also handle churn in a seamless manner. The multi-path transport is also

designed to optimize for latency in the case of short flows and maximize throughput for

large flows. Third, the Unblock design borrows adaptive flow control mechanisms from

the ATM literature to minimize queue build-ups that might arise from transient congestion

or persistent disparities in capacities of overlay nodes.

End-to-end Congestion Control over Multiple Paths

The routing algorithm ideally yields multiple paths to a specific exit node. Data from the

incoming stream is split into chunks, which are then transmitted across all available paths

using UDP datagrams. The receiving endpoint assembles the packets and delivers it to the

application in the correct order. Unblock handles congestion over end-to-end paths using

a TCP style transfer window for each overlay path that is updated using the traditional

additive increase multiplicative decrease mechanism upon packet losses over that path (as

in MPTCP [101]).

Unblock also uses a redundancy mechanism to balance the goals of latency and through-

put. Based on how much data has been transmitted, the sender will determine if the

stream is a data-intensive, throughput-bound stream, or a bursty, latency bound stream.

Initially, all transfers are assumed to be latency sensitive and messages will be duplicated

and sent along multiple overlay paths. The amount of duplication is steadily reduced as

more bytes are transferred over the end-to-end path. This balances the goal of minimizing

latency when transmitting small pieces of content with the goal of using all of the available

throughput for larger transfers.
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Delay Based Adaptive Flow-control

Unblock operates in settings that could benefit from the circuit-based mechanisms used in

ATM networks. More specifically, our environment has:

• High end-to-end latencies. Overlay paths span multiple hops, often spanning several

continents. End-to-end congestion control responds to congestion over timescales

of RTT, leading to slow ramp up and slow recovery from loss. Also, given bursty

traffic, by the time an end-to-end protocol has responded to congestion, a large burst

of packets can already be lost.

• Diverse Link Characteristics. Link bandwidth may vary by several orders of magni-

tude, from 1 Gbps fiber-to-the-home to 256 Kbps cable modems. Flows starting with

a high bandwidth link will quickly fill the buffers of subsequent low bandwidth links.

While Unblock contains end-to-end congestion control compatible with multipath TCP,

I augment that mechanism with a back-pressure based mechanism based on the N23 pro-

tocol used in ATM networks [51]. This mechanism minimizes queueing and eliminates

packet loss on overlay nodes. Just as in credit-based flow-control for ATM networks, Un-

block regulates the flow of data from upstream nodes using credits. Credit to send data to

a downstream node is replenished through explicit control messages. When a node detects

that a queue is building up, it stops issuing credits to upstream nodes, thus temporarily

slowing or stopping the flow. In the N23 protocol, the amount of credit issued determines

the balance between optimizing for latency and throughput. Lower values decrease worst

case queueing but also lead to low utilization. An existing end-host congestion control

protocol recommends a target queueing delay of 100 ms at the bottleneck link to strike the

appropriate balance [85].

To maximize throughput it is important to fully utilize the bottleneck link, and for

that reason Unblock allows up to 100 ms of queueing on that node. However, for non-
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bottleneck links it is neither required nor preferred to allow such lengthy queues.7 Instead,

intermediate nodes detect if they are non-bottleneck node and then chose a lower queueing

target of 10 ms. Nodes can detect that they are non-bottleneck nodes when they are limited

by credits rather than their own bandwidth.

4.2.6 Secure Connection Bootstrapping

The announce protocol creates a routing table at each node in the system. This table con-

tains the next hop to each exit node. By running the DHT service only on exit nodes it

is possible to plug in an existing DHT protocol such at Kademlia with the only modifica-

tion being that the node_id is the public key hash of the exit node. No translation between

node_ids and network addresses is required.

When a node wishes to query the DHT it can first look at its local routing table to find

the exit nodes most adjacent in key-space to the desired key. There is no guarantee that

the node knows about all the exit nodes8 so in response to the query the node could either

receive the result, or another node key that is closer in key space. When this happens the

node will cache the results and iteratively repeat the query until the correct node is found.

Just as in OneSwarm each client is identified by a 1024 bit RSA key pair. This key is

persistent, even when the IP address of the peer may change. At startup, a client will

insert a copy of its current connection information into the internal DHT for each peer

link. These copies will be encrypted with the public key of the remote node, and indexed

into the DHT using a 20 byte, randomly generated shared secret, agreed upon during the

first successful connection. Before the first successful connection the location information

is stored at a location calculated as the hash of the remote node public key concatenated

with the public key of the local node.

7In the worst case with nodes of monotonically decreasing capacities, the total queueing delay becomes
target_latency ∗ hop_count.

8This can happen immediately after startup for example.
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4.2.7 Attacks and Defenses

In this section, I outline some of the potential attacks and ways in which they can be de-

fended against. I consider scenarios where an attacker can join the network with a limited

number of nodes, monitor network traffic to/from its nodes, and generate, modify, and

delete Unblock overlay messages flowing through its nodes.

As discussed earlier, the network augmentation mechanism limits the exposure of relay

addresses to k per attack edge. Further, the design of the DHT that allows for DHT oper-

ations to be performed using just the overlay topology and the encrypted storage of node

location information in the DHT prevents the leakage of additional information regarding

relays participating in the system.

An important property of the the Unblock protocol is a resilience to adversaries claim-

ing to offer exit capabilities. The two mechanisms a malicious exit node could leverage to

attack the system are: (1) flooding announcements to overwhelm the system, and (2) black-

holing received traffic. Unblock mitigates these attacks through the certification mecha-

nism. Nodes in the system will only forward exit node announcements if they are signed

by a trusted directory service. This property allows a directory to throttle the total rate of

exit node announcements on the network, and verify the functionality of exit nodes before

signing proposed announcements.

I now briefly describe the certification process. An exit node will request certification

either directly from the Unblock directory service, or through the Unblock overlay if the

directory is blocked. In the common case where direct connections are functional, the

directory will automatically sign one announcement request per unique IP address in each

announcement period. In order to support certification in cases where the exit node cannot

be identified directly, the directory will also provide a service to certify announcements

through the overlay itself. This service will make use of computational puzzles in order to

limit an adversary’s ability to perform a Sybil attack wherein a single adversarial exit node

makes multiple advertisements and thereby attracts a disproportionately high fraction of
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the system traffic.

The use of a minimum latency tree also prevents attacks where an adversary tries to

position itself in as many overlay paths as possible. Note that exit node announcements

are forwarded as soon as they are received by nodes in the system, so an overlay path

would traverse an adversary only if it is in the minimum latency tree. This prevents traffic

attraction attacks which might be possible if Unblock had used a more traditional distance

vector style protocol for computing routes to exit nodes.

Finally, Unblock guards against eavesdropping by intermediate nodes using end-to-

end encryption between clients and exit nodes in the system. This however provides

somewhat weak guarantees, as the traffic might be routed through as few as two interme-

diates, namely the node that neighbors the requesting client and the exit node itself. For

users desiring stronger anonymity properties, Unblock could allow back-to-back traversal

of overlay routes, so that traffic upon reaching an exit node is routed back through the

overlay to a different exit node, before it is conveyed to the actual destination.

4.3 Evaluation

The implementation of Unblock is constructed as an experimental extension to OneSwarm.

The Unblock extension has not however been released publicly, nor do I have access to the

social network topology of the user base, so I limit the evaluation results to controlled

testbed settings.

I begin by evaluating the performance of the transport layer implementation using a

multi-hop test framework in PlanetLab. In order to demonstrate the advantages of Un-

block’s design and practicality in forwarding web traffic, I compare its performance to

standard transport mechanisms used in systems such as Tor.

Additional evaluation is done in a simulator to evaluate the security and performance

properties of Unblock at scale. I begin by analyzing the impact of untrusted shortcut links

on the network topology. Compared to the baseline in Section 4.1, shortcut links are shown
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Figure 4.9: Web page load time across the Unblock overlay. Unblock represents load
times across a three hop overlay using the optimized Unblock transport protocol. Single
path TCP shows baseline load times for the same topology using per-hop TCP over a
single overlay path.

to maintain connectivity to a significantly higher number of nodes during churn. I then ex-

plore the trade-off between better availability and risk of disruption of service by a censor

adversary.

4.3.1 Transport Performance

I evaluated the performance of our transport by inserting the Unblock overlay as a relay to

a SOCKS proxy. The PhantomJS headless webkit browser was used to measure page load

times of popular websites. Much of the time spent rendering a page comes from depen-

dent resources, making network latency more important than many systems acknowledge.

Pages were loaded from the same set of domains as Figure 4.6.

This set of experiments demonstrates the importance of lowering latency in order to

efficiently handle the small, bursty traffic associated with web requests. Figure 4.9 shows

that Unblock has a fairly constant 2-5 second page load penalty compared with loading
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Figure 4.10: Throughput performance of Unblock. Non Redundant represents possible
throughput when packets are only sent once, at the cost of higher latency. UDP perfor-
mance improves with more paths until either the client or source is bandwidth limited.

pages directly. I attribute part of this penalty to the decision to develop the overlay purely

at the socket level. By implementing a local SOCKS5 proxy, as the Tor system does, Un-

block would be able to bundle multiple web requests within the same set of paths, rather

than suffering a full round trip time of latency to establish paths before beginning each

request. The use of UDP, the ability to take advantage of multiple channels, and the credit-

based flow control already provides a significantly less variable and lower latency service

than the baseline transport that uses per-hop TCP connections over a single overlay path.

Next I consider microbenchmarks that allows examination of the performance and la-

tency enhancements made possible by different versions of the transport layer. Perfor-

mance was evaluated using PlanetLab nodes located across the US. In all trials, the topol-

ogy consisted of four disjoint paths from client to server, each with three hops. All nodes

were selected randomly from the available pool, with nodes reselected between each trial.

Each node had a bandwidth rate limit of 1Mbps. Figure 4.10 shows the observed through-

put achieved with the various transport improvements: Transferring data using an en-

crypted UDP transport, transferring data concurrently over multiple paths, and dynamic

use of redundant packet transmissions. Throughput is measured as the time required to
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Figure 4.11: Latency performance within the overlay. With redundant transmissions,
latency suffers less from the presence of slow or flaky paths.

transmit one megabyte of data. Using multiple paths with UDP improves throughput lin-

early until three paths, where bandwidth of either the source or destination limits its ability

to transmit or receive more. I also examine the throughput of multi-path flows that do not

perform any redundant transmissions in order to characterize the capacity lost due to re-

dundancy; this scheme provides only a marginal increase in throughput indicating that

the cost of redundant transmissions is low.

Figure 4.11 provides microbenchmark results that evaluate the use of redundant trans-

missions. It shows measurements of the transmission time for a 100 kilobyte flow across

the same topology as the other experiments, with and without the adaptive use of redun-

dant transmissions. While most links in the testbed had robust performance characteristics,

when slow or flakey links were encountered, redundant transmissions were able to main-

tain a low latency connection by mitigating retransmissions and in-order delivery delays.
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4.3.2 Simulation Results

The following experiments are performed on a simulator in order to measure the implica-

tions of our design decisions at scale. Using the simulator, I find that the shortcut discov-

ery protocol effectively improves the connectivity to any particular exit node in the face

of churn, while restricting the number of honest users that are exposed to a censor’s moles

in an attack. Even with a strong model adversary that can block 50% of the edges in the

network, shortcuts effectively improve connectivity.

These measurements were performed using simulated networks based on the datasets

collected by [62]. For some of these datasets, as in the Youtube social network, I was able

to obtain the geographical location of the user. In such cases a latency between users is

added using predictions from iPlane [58]. Exit nodes and moles are chosen at random from

available nodes in the graph. The evaluation was repeated with varying churn, wherein the

node uptimes and downtimes are modeled using Poisson distributions. Lastly, shortcuts

are only created between nodes that have degree less than 50. This restriction protects

high-degree nodes from being overloaded and restricts disclosure of high-value nodes to

censors.

Figure 4.12 shows the improvement in the availability of paths to exit nodes as we

add untrusted links to the underlying social network for the Youtube dataset.9 In this

experiment, 10% of the nodes were set to be exit nodes. The experiment was repeated for

a range of node uptime values. For each value of expected node uptime fraction f, the

number of untrusted links discovered by the shortcut mechanism is set to be 2/f. This

parameter setting implies that each active node, in expectation, will have two untrusted

links to other active nodes in the system. The results show that the additional untrusted

links can dramatically improve the availability of paths to exit nodes, especially when the

node uptime fraction is low (as is the case with most peer-to-peer systems [89, 37, 78, 55]).

9The Youtube social network comprises of about a million users. The same analysis was performed on both
smaller and larger social networks (e.g., the Foursquare network with about hundred thousand users and
the LiveJournal network with about five million users) and obtained results that were qualitatively similar.
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Figure 4.12: Fraction of nodes with paths to exit nodes on the Youtube social network
dataset for varying node uptimes and with 10% of the nodes being exit nodes.

Figure 4.13 shows the CDF of latencies to any available exit node when nodes are online

for 50% of the time. I examine this with and without untrusted links, and observe that the

use of untrusted links also significantly lowers latency. I also model a strong adversary

that monitors exposed shortcut nodes from 10000 moles in the network. The censor also

has the power to block 50% of a node’s links if exposed to its moles. As expected, I found

a linear relationship between the number of attack edges and the number of honest nodes

exposed to moles. More importantly, Figure 4.13 shows that there is minimal degradation

in both connectivity and performance as a consequence of having the strong adversary.

4.4 Summary

Desire for uncensored Internet access has motivated the development of tools for censor-

ship circumvention. However, most popular tools are not themselves censorship resistant

and instead found themselves censored. This failing has prompted me to develop Unblock,

a system designed to both provide uncensored communication, and resist censorship itself.

Through large scale simulations and measurements of a prototype implementation de-
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Figure 4.13: Impact of untrusted links on latency to exit nodes when 50% of users are
online.

ployed on PlanetLab I show that Unblock can provide users access to blocked Internet

services through a social trust based overlay. I believe the ideas behind Unblock will allow

it to improve upon both the privacy and performance relative to existing solutions.
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Chapter 5

RELATED WORK

Providing privacy and anonymity for Internet data transfers is a longstanding goal of

the research community, and I draw on many existing ideas in the design of OneSwarm

and Unblock.

5.1 Anonymous communications

There are two well known techniques for achieving anonymous communication. One ap-

proach is to interpose a third party (often referred to as a proxy) between the source and

destination to hide the source’s identity from the destination. For instance, Anonymizer

provides anonymization services commercially, providing a centralized service that relays

web traffic [6]. A proxy, however, allows a single entity to learn the identities of both the

source and the destination. This lead to the development of schemes that convey traf-

fic through multiple intermediaries. Crowds [77], provides anonymous web browsing by

randomly tunneling requests via other system participants; an intermediary node either

choose a random successor relay or simply submit the request to the destination. Tor [27]

leaves the choice of relays to the source. An issue with recruiting volunteer relays is that

the malicious activity emanating from exit nodes is often attributed to their hosting orga-

nizations, discouraging users from hosting exit nodes. I see this as a policy rather than

technical issue, and mitigate it by distributing a default set of whitelisted services with

whom exit nodes will relay traffic.

An other approach to achieving anonymous communications is to use mix nets. Re-

laying electronic messages through intermediaries to obscure the source and destination

from a global eavesdropper was first proposed for anonymous email by Chaum [16]. In
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his scheme, the mix is an enhanced proxy that collects encrypted messages of equal length

from senders, decrypts the messages using its private key, and forwards the messages to

the appropriate recipients in a different order such that an eavesdropper cannot determine

which output messages correspond to which input messages. A sequence of mixes pro-

vides stronger unlinkability properties and is robust to colluding mixes. More recent work

has shown that mix nets functionality can be achieved without a public key infrastruc-

ture [49]. However, the message transmission times for mix-net based systems are typically

on the order of several minutes or longer. This makes them unsuitable for use in applica-

tions involving interactive traffic, such as web browsing and VoIP, though they suffice for

other services such as email making them complementary to Unblock and OneSwarm.

5.2 Censorship resistance

Naturally, anonymizing solutions have been adapted to achieve censorship resistance [75,

19]. A key stumbling block though is that most proxy-based anonymizing solutions are

not membership concealing. An adversary interested in enforcing censorship can then

infiltrate the anonymizing system, learn the identities of the proxies, and block all commu-

nications to them. The Tor developers recognized this challenge [92] and have proposed

mechanisms to distribute a small subset of relays to each client using out-of-band com-

munication channels [25], but adversaries can subvert such techniques [26]. Feamster et

al. [33] propose a system that restricts the set of proxies known to each client based on

the client’s IP address, but their system cannot defend against an adversary who controls

blocks of IP address space or a large set of IP-addresses, e.g. through a botnet.

Another piece of related work is Infranet [59], which uses stenographic techniques to

tunnel sensitive requests through innocuous looking web requests. A gateway at the ser-

vice provider side, upon detecting an Infranet client, sends back critical information hid-

den in images. By hiding information in unencrypted web traffic, Infranet works even if

the censor blocks encrypted traffic and performs deep packet inspection on unencrypted



109

traffic, However, it requires strong identities and a large amount of cover traffic to convey

small bits of sensitive data.

Censorship resistant publishing can be achieved by pushing data onto nodes willing

to serve as storage sites for public data [20, 97, 98]. It is worth noting that these systems

face a different set of challenges, namely the ability to support anonymous publication,

providing durability, and preserving the integrity of published data. These systems are

not designed to provide interactive or non-interactive communication between a source

and a destination across censorship domains. Neither OneSwarm or Unblock provides

any mechanism for persisting user data on other user’s machines, instead the overlay is

used solely for connecting hosts with clients in an privacy preserving manner.

An alternative to overlay solutions running on end-hosts is to build anti-censorship

technology into the network. Examples of this include Decoy Routing [48], Telex [103],

and Cirripede [40]. Instead of contacting the proxy server directly using the IP address of a

proxy, these systems instrument core Internet routers to detect special patterns in packets,

and redirect matching flows flows to a proxy. The advantage with this scheme is that the

actual IP destination can be any address as long as the path to the destination intersects

with an instrumented router. The main disadvantage with this solution is that is requires

cooperation from large ISPs. I believe there is value in both pursuing approaches that relies

on private individuals contributing resources as well as those that require large corpora-

tions to act. My work is focuses on tools for private individuals.

5.3 Social networks

Incorporating real-world trust relationships has been a crucial design element in several

recently proposed systems. Friendstore [94] is a P2P backup system where users store

backup data only on other trusted nodes owned by friends or colleagues. In Ostra [63],

the scarcity of social connections is used to combat spam. UIA [34] provides data routing

and name resolution over a socially constructed overlay of personal devices. Johnson and
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Syverson have recently described how to include preexisting trust when choosing paths in

Tor [90]. Turtle [73] is a file-sharing application that limits direct communication to only

the social graph in an attempt to circumvent eavesdropping. Waste [99] allows users to

create password-protected communities for secure chat and file sharing. Once invited to a

community, users can discover other members, connect to them, send them messages, and

browse their shared files. Baden et al. have applied cryptographic techniques to enable

data sharing with permissions in current social web services without exposing content to

service providers [9].

5.4 Sybil defenses

Many defenses have been proposed to combat Sybil attacks. These include strong iden-

tities minted by a logically centralized authority [29], computational puzzles and band-

width contributions to make peers prove that they are not Sybils [12], and leveraging so-

cial networks [106, 54]. Defenses based on social networks, such as SybilGuard [106] and

SybilLimit [105], might seem appropriate for Unblock as they limit the creation of trust

relations to unknown identities unless they have valid social network properties. Their

techniques are insufficient for the threat model I consider because they do not provide

any mechanisms for concealing the membership of the social network and because they

provide weak bounds on the number of trust links created to Sybils by the network as a

whole. In contrast, the mechanism for finding untrusted peers in Unblock does not reveal

the identity of any users except the specific ones that will be connected to.

5.5 Sharing workload

There is a large body of work measuring the properties of peer-to-peer networks [1, 37, 69]

and file sharing sites [14]. I conducted new experiments because previous studies did not

show how content interest relates to the social network of the participants. By measuring

the content interest as well as social network of last.fm users I am able to relate these fac-

tors allowing more realistic assumptions of how sharing in a social overlay occurs. These
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measurements allowed for a more accurate simulation based evaluation of the OneSwarm

protocol.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

In this chapter I describe the contributions made by the dissertation and how they sup-

port the thesis. I then give an overview of future research directions in the area, and end

with a short summary of the dissertation in Section 6.4.

6.1 Contributions

This dissertation demonstrates the following thesis: By building overlay networks based on

social trust we can improve security and performance relative to existing solutions.

The work made the following contributions:

• The design, implementation, and evaluation of a privacy preserving file distri-

bution protocol for social network overlays. I provide the design, evaluation, and

implementation of OneSwarm, a file sharing protocol designed for high performance

privacy preserving data sharing in a social overlay network. The protocol gives users

complete control over their data, and allow them to share data only with friends and

family, or with everyone, while still preserving their privacy. I have evaluated the

protocol both in the wild and in a simulator to evaluate the system at large scale. The

results show that the protocol protects user privacy while maintaining performance.

• A software artifact, OneSwarm. The OneSwarm client provides an open-source

reference implementation of the OneSwarm protocol. The software binary as well as

related source code is available to the public.

• The design, implementation, and evaluation of a censorship resistant system for

social network overlays. I have designed, implemented, and evaluated Unblock, a
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protocol that can assist users when bypassing Internet censorship. Measurements of

the implementation and simulations of the system at large scale shows that social net-

work overlays can get around a censor while at the same time improve performance

relative to public overlays based on onion routing.

6.2 Key ideas

Both OneSwarm and Unblock benefit from a common set of design techniques.

• Base overlay topology on social network: By basing the overlay topology on the

social network of the users it is possible for the overlay to rely on the trust users have

in each other. In the case of OneSwarm the system relies on trusted friends to not

reveal the source of data when forwarding requests. In the case of Unblock users

trust their friends to not expose their network address to the censor. By relying on

this assumption is it possible to simplify protocol and improve performance.

• Augment social graph with untrusted links: Restricting the overlay to only con-

tain trusted links makes it hard for new users to join the network and provides poor

performance and availability for users with few trusted links. For these users is it

critical to provide an avenue to increase their connectivity. Untrusted links allows

new users to connect to other users that they necessarily do not trust. This mech-

anism increases their exposure to attackers, but the increased connectivity with the

overlay improves performance. Users can adjust the privacy/performance tradeoff

to suit their needs. Experience from the OneSwarm user community as well as sim-

ulation and real world experiments has shown that untrusted links provide a useful

tradeoff, especially for new users.

• Use multiple paths: Basing the overlay topology on the social network of the

users means that the system must depend on multi-hop paths through the over-

lay. Measurements of the OneSwarm overlay show that while the performance of
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each individual path is limited, the aggregate performance of multiple paths provide

throughput similar to a direct connection. Using multiple paths is critical for good

performance.

• Provide flexibility with regards to users varying need for privacy: Feedback from

the OneSwarm user community showed that different users have different goals for

the system. Some users add a large number of untrusted links, even though that

increases the probability of exposure to attackers. For these users improved perfor-

mance is more important than minimizing the likelihood of exposure. Other users

restrict their connectivity to just a few close friends. These users have no exposure to

an attacker as long as their friends remain honest.

A similar design principle influenced the design of Unblock. Different countries have

varying levels of censorship. In some countries the censorship technology is so prim-

itive that simply detouring traffic through another country is sufficient. In other

countries the censor actively tries to discover and block cross country overlay links.

• Support network mobility: Once two users have created a trust link they expect

to be connected when both users are online. Some engineering is required to pro-

vide seamless support for dynamic IP addresses and mobility. Both OneSwarm and

Unblock rely on a DHT to rendezvous between users. In OneSwarm a public DHT

is used. In Unblock an overlay internal DHT is used as a public DHT can be easily

blocked by a censor. Allowing users to “automatically” find each other without the

need to manually enter IP addresses and ports decreases user friction and improves

the connectivity of the network.

6.3 Future work

The work presented in in this dissertation opens up several areas of future work.



116

6.3.1 Protecting OneSwarm users against malicious ISPs

The threat model OneSwarm operates under assumes that the users local ISP will not col-

lude with the attacker. However, projecting forward, it is quite possible that ISPs take a

more active role in monitoring their networks. There are some obvious traffic pattern at-

tacks an ISP can launch against OneSwarm users. Modifying the OneSwarm protocol to

be robust against malicious local ISPs would be needed if this reality becomes true.

6.3.2 Contribution incentives for anonymous systems

Maintaining user privacy while at the same time rewarding user contributions is a chal-

lenging task. In OneSwarm the incentive system is based on local information about di-

rectly connected peers. Peers that maintain a positive upload to download ratio get pref-

erential service during times of congestion. However, forwarding data is not necessarily

rewarded as it merely shifts the balance from one peer connection to the next. Rewarding

users for forwarding data would be good, but neighbors do not know the final source or

destination of a transfer so it is hard to know if data is forwarded or not. As show in Sec-

tion 3.5 the current OneSwarm overlay does not suffer from lack of forwarding capacity,

but in a future where Internet service providers charge for data usage or enforce band-

width caps it is possible that users will decrease the capacity they are willing to contribute.

In such a future providing users with incentives for forwarding data would be required.

6.3.3 Global deployment of Unblock

The prototype implementation of Unblock allowed me to evaluate the feasibility of the

design. Since there are no published anti-censorship social network overlays I had to rely

on measurements of other social networks for the evaluation. To understand how these

types of networks evolve and are used we must perform measurements of an existing

deployment. Deploying Unblock in censored regions would make it possible to better

understand how the system operates in the wild.
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6.3.4 Directly hosting content in Unblock

The routing protocol in Unblock scales really well with the number of users, but scales

poorly with the number of exit nodes. The current assumption is that the number of users

will be significantly larger than the number of exit nodes, so announcing each exit node to

each users does not impose a large burden. However, it is also the case the Internet services

have a performance incentive to directly host their service within the overlay. The simplest

way to do this is for the service to run its own exit node, where the exit policy restricts

communication to just the service in question. If this behavior becomes common place

the overhead of the exit node announcements could become significant and an alternative

protocol would have to be deployed.

6.4 Summary

The core Internet protocols were not designed to protect the privacy of the participants of

communication. Unfortunately, this choice has led to censorship and surveillance becom-

ing increasingly common on the Internet today. The same problem persists at higher level

protocols, for example: popular peer-to-peer networks are trivial to monitor even for an

adversary with limited resources.

This dissertation describes the design, implementation, and evaluation of two sys-

tems that can bring us towards a future with less, not more, censorship and surveillance.

OneSwarm is a privacy-preserving data sharing network designed to give users perfor-

mance comparable to widely used peer-to-peer networks without exposing user behavior

to third party surveillance. Unblock is a overlay network that expands on OneSwarm but

is designed to circumvent censorship of general-purpose Internet services. Common to

both systems is the use of existing social trust between participants to thwart surveillance

and censorship. These systems are designed to run on today’s Internet with no changes to

core Internet infrastructure and protocols. Measurements of the systems in the wild, and

simulations of their behavior at scale, show that they protect user privacy and improve

performance over existing alternatives.
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