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Using BitTorrent for measuring end-to-

end Internet path characteristics  

Abstract 

This report presents BitProbes, a system utilizing participants in peer-to-peer 
systems as targets for measuring the link characteristics of Internet end hosts. 
By connecting measurement nodes to popular swarms of the widely used peer-
to-peer system BitTorrent, it is showed that properties of BitTorrent make 
users of it well suited as targets for Internet measurements. The design and 
implementation of a system for large scale end host measurement is presented. 
The system is capable of measuring the upload capacity and link latency of end 
hosts as well as recording the path to the host. The report also includes the 
design of a probing tool that can measure the download capacity of end hosts 
in what looks like a BitTorrent application level handshake. This tool exploits 
TCP-packet reordering to disable delayed acknowledgements on remote hosts. 
An early version of BitProbes is then evaluated on PlanetLab to verify both 
potential coverage and usability of results. A later version is currently running 
at 8 dedicated machines in a server cluster at the University of Washington, 
covering roughly half a million end-hosts per week. The measurements are 
stored in a database accessible by the iPlane, a system developed at the 
University of Washington that provides predictions about Internet path 
performance. With the addition of end-host measurements, the iPlane is able to 
predict the properties of the link between two arbitrary end hosts. 



  

 

Mäta egenskaper hos Internet-

anslutningar genom att utnyttja 

BitTorrent 

Sammanfattning 

I denna rapport presenterar jag BitProbes, ett system som begagnar användare 
av det populära peer-to-peer programmet BitTorrent som mål för mätning av 
egenskaper hos slutanvändares Internetanslutning. Genom att ansluta speciella 
mätnoder till populära BitTorrent svärmar visar jag att egenskaper hos just 
BitTorrent gör användare av det väl lämpade att använda som mål för 
mätningar. Jag presenterar design och implementation av ett system byggt för 
storskalig mätning av slutanvändares anslutning. Systemet är kapabelt att mäta 
bandbreddskapaciteten  uppströms och länkens latens hos slutanvändaren så 
väl som att notera vilken Internet väg som använts. Jag presenterar också 
designen av ett verktyg för att mäta bandbreddskapaciteten nedströms i vad 
som för slutanvändaren ser ut som en vanlig handsskakning i BitTorrent 
protokollet. Detta verktyg skickar TCP-paket i ändrad ordning för att inaktivera 
TCPs ”delayed acknowledgement”.  En tidig version av systemet utvärderades 
på PlanetLab för att verifiera om det är möjligt att få god täckning så väl som 
användbara data. En senare version körs nu på 8 dedikerade maskiner i ett 
serverkluster vid University of Washington, och ansluter till ungefär en halv 
miljon slutanvändare per vecka. Mätresultaten sparas i en databas som är 
tillgänglig för iPlane, ett system utvecklat på University of Washington för att 
förutspå egenskapen hos Internet vägen mellan två godtyckliga noder på 
Internet. 
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1 Introduction 
Detailed estimates of Internet path properties allow applications to make better 
decisions. Content distribution networks (CDNs) such as Coral (Freedman, 
Freudenthal et al. 2004), CoDeeN (Wang, Park et al. 2004) and Akamai 
(Akamai 2006) have the ability to use Internet topology information to redirect 
clients to the node which provides the best performance. Peer to peer services 
such as Skype (Skype 2006) and BitTorrent (Cohen 2003) could use 
knowledge of both the core and the edge to be able optimize peer selection to 
improve end-user performance (Madhyastha, Isdal et al. 2006). Overlay 
services such as RON (Andersen, Balakrishnan et al. 2001) can optimize routes 
based on metrics such as loss rate, latency, or bandwidth capacity to allow for 
applications to select routes based on specific needs.  

The iPlane is a scalable service that provides predictions about Internet path 
performance. To be able to make accurate predictions, the iPlane requires 
measurements of a large number of Internet routes. When measuring the 
Internet core, a concern is to make accurate measurements without using too 
much bandwidth. Techniques for this have been published, yielding tools such 
as Spruce (Strauss, Katabi et al. 2003) and PathLoad (Jain and Dovrolis 2003) 
for available bandwidth, CapProbe (Kapoor, Chen et al. 2004) and SProbe 
(Saroiu, Gummadi et al. 2002) for bandwidth capacity, and ping and 
traceroute for latency and topology. Even with these tools, researchers are 
limited when performing measurements to end-hosts (Spring, Peterson et al. 
2006) even though this is where the greatest diversity of the network link 
properties exists.  

Measurements to the edge have proved to be difficult due to uncooperative and 
even hostile hosts. End hosts are often firewalled, which makes them not 
respond to active probing and rules out many of the tools that are used for 
mapping the core. Hosts can also mistake a measurement probe for an intrusion 
attempt, causing alarms in intrusion detection systems (IDS). To avoid these 
problems, researchers have been forced to take alternative approach to end host 
measurements. Instead of active probing, systems such as PlanetSeer (Zhang, 
Zhang et al. 2004) have taken an opportunistic approach to end host 
measurements as described in (Chen, Bindel et al. 2004). These systems infer 
link properties by passively monitoring TCP streams of hosts using a service 
already in use by the measuring node. This allows measurements of end-hosts 
without triggering alarms in IDSs. These systems, while successful, have the 
drawback that they are limited by the popularity of the service offered. Getting 
providers of popular content to install the required measurement application on 
their servers has also proven difficult.  

Instead, I propose a solution where the measuring nodes participate in popular 
peer-to-peer systems. These systems are widely deployed and provide millions 
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of hosts that can be measured. One of the most widely deployed systems, 
BitTorrent, provides just the level of free-riding support required to be able to 
perform a wide array of measurements. The information that can be collected 
includes bandwidth capacity, latency and topology. While this information is 
collected, the measuring node still looks like any other peer from the 
perspective of the measured host. This is crucial since it avoids triggering 
alarms in IDSs.  

In this report, I present the design and implementation of BitProbes, a system 
for large scale end-host measurements. I show that the use of BitTorrent 
provides a large user-base that can be measured unobtrusively. The system is 
capable of measuring the upload capacity and link latency of end hosts as well 
as recording the path to the host. I also show that measurements to one end 
host generalize to other hosts close in IP address space. I then present the 
design of a probing tool that can measure the download capacity of end hosts 
in what looks like a BitTorrent application level handshake. This system is 
currently running on 8 dedicated machines in a server cluster at the University 
of Washington. The measurements are stored in a database accessible by the 
iPlane. These nodes provide roughly half a million connections to distinct end 
hosts per week, connections that are used to transparently measure the hosts.  

These measurements allow the iPlane to not only provide predictions about 
Internet core routes, but also to provide predictions about the link performance 
between two arbitrarily selected end hosts. A description of the iPlane is 
available in (Madhyastha, Isdal et al. 2006). In that paper we implement a 
content distribution service, a peer-to-peer swarming file-sharing application 
and Voice-over-IP application that each use predictions made by the iPlane. In 
all of these applications we show that prior knowledge about the characteristics 
of Internet paths, such as capacity, latency and loss-rate leads to significant 
improvement in end-user performance.  

The rest of this report is organized as follows. Section 2 provides background 
information about the technologies used in this system. Section 3 gives the 
reader an overview of the system design followed by a detailed description of 
the implementation of the system in Section 4. Section 5 presents an evaluation 
of the methods used as well as statistics about the collected measurements. 
Section 6 gives an overview of previous systems that have used similar 
techniques to collect measurements. Section 7 concludes the report and 
discusses the success of the method. 
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2 Background 
This chapter provides background information for readers that are 
unfamiliar with the iPlane, the BitTorrent protocol or Internet 
measurements.  

The iPlane section provides a short introduction to the iPlane. The 
iPlane provides a query interface for applications that benefit from 
prior knowledge of Internet path characteristics. 

The BitTorrent section introduces the BitTorrent protocol and the 
different components of a BitTorrent system. It then goes into more 
technical detail about the parts of the protocol that make BitTorrent 
suitable to Internet measurements.  

The measurement section contains an extensive overview of previous 
Internet measurements research. The focus is on bandwidth capacity 
measurements since these are the measurements performed by this 
system that are the most difficult to perform accurately. 

2.1 The iPlane 
iPlane: an Information Plane for Distributed Services (Madhyastha, Isdal et al. 
2006) is a system developed at the University of Washington. The iPlane, 
when queried by an application, is able to predict properties of arbitary Internet 
paths, allowing the application to make better decisions about for example peer 
or server selection. 

The iPlane has been evaluated with three applications: a CDN service, a Voice-
over-IP, or Skype-like, application and BitTorrent. Results from the CDN and 
the BitTorrent experiment are shown below. 

In the BitTorrent experiments, we used a modified BitTorrent tracker. The 
standard BitTorrent tracker will, when queried, return a random subset of the 
peers associated with the particular swarm. We modified the standard 
BitTorrent tracker to instead take predictions made by the iPlane into account. 
Instead of randomly returning peers, the modified tracker returns only 50% of 
the peers selected randomly. The other 50% of the peers returned are peers that 
are predicted to be well connected with the querying peer. To check if our 
technique is better than proposed optimizations to the BitTorrent protocol, we 
also compared against an extension to BitTorrent that utilizes Vivaldi (Dabek, 
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Cox et al. 2004), a system for Internet coordinates. A cumulative distribution 
function (CDF) plot of comparative results is given in Figure 1. 

 

Figure 1: A comparison of BitTorrent performance with and without path-
prediction on the tracker. 

As can be seen in the figure, 80% of the hosts using the iPlane tracker have 
completed their download within the first 130 seconds. At this time only 35% 
of the Vivaldi hosts and none of the hosts using the normal BitTorrent tracker 
had completed the download. It can also be seen that the slowest 10% see only 
a very limited improvement with the iPlane’s tracker, suggesting that this 
optimization primarily is important for hosts that do not utilize their potential 
capacity with regular BitTorrent. The conclusion of this experiment is that a 
tracker that is querying the iPlane will improve the performance of BitTorrent 
file transfers. 

We also verified that the iPlane can help content providers such as Akamai and 
CoDeeN that direct hosts to the server which will provide the highest TCP 
throughput as suggested by the PFTK model (Jitendra, Victor et al. 1998) and 
the iPlanes predictions link characteristics. Current CDNs instruct their name 
servers to direct clients to the server that is closest in terms of latency. To see if 
the predictions made by the iPlane could perform better we compared 
download times of clients connecting to the closest server, and clients that 
connected to the server that the iPlane predicted to have best performance. It 
should be noted that the choice of the closest server was done by an “oracle” 
having complete knowledge of the network; something that would requires 
extensive probing, and therefore is infeasible in the real world.  
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Figure 2: Download times from CDN using iPlane’s performance predictions 
or the closest server in terms on latency. 

As seen in Figure 2, the iPlane and the oracle have very similar performance 
for small files. For larger files, the iPlane performs marginally better than the 
oracle. This is very encouraging results since the iPlane only uses predictions, 
while the oracle relies on active probes to create a complete map of the 
network. 

2.2 The BitTorrent protocol 
The BitTorrent protocol is a peer-to-peer file transfer protocol that has become 
increasingly popular the last couple of years. Sources state that as much as one 
third of all Internet backbone traffic originate from BitTorrent transfers (Parker 
2004). 

2.2.1 General idea of BitTorrent 

The BitTorrent protocol was developed to allow people with limited resources 
to make their content available to a large group of people. The traditional 
client-server model of the Internet, illustrated in Figure 3, requires the server to 
send one copy to each client causing the load on the server to increase linearly 
with the number of clients. 
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Figure 3: Centralized file distribution.  
Figure source: (bittorrent.org 2006) 

The purpose with BitTorrent is to utilize the upload resources available on the 
participating clients, resulting in increasing system resources as clients 
connect. An illustration can be seen in Figure 4. The clients, or peers, are 
grouped into swarms, where each swarm contains the clients interested in the 
same data. As soon as a peer has received a piece of the data, it announces to 
the other peers that it has that data. The peers are therefore able to request data 
from any participant in the swarm which has the requested data, not only the 
original source. Utilizing the resources of the clients allows for file distribution 
that scales very well.  

 

 

Figure 4: File distribution with BitTorrent  
Figure source: (bittorrent.org 2006) 
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BitTorrent is able to distribute both single files and multiple files. All the 
information about the structure of the files transmitted is contained in a .torrent 
file. This .torrent file includes checksums of the contents of the files transferred 
to make it possible for the peers to verify that the information received in fact 
is the information sent by the initial source. To make the transfer more efficient 
the content is divided into pieces, each piece being around 64-256 Kbytes, 
although larger pieces sometimes are used. The .torrent file contains the 
checksum of all the pieces which makes it possible for clients to recover from 
transmission errors without any significant penalty. This also makes it difficult 
to cheat the system since any malfunctioning or hostile peer sending bogus 
information immediately is detected (bittorrent.org 2006). 

Using pieces makes it is possible for peers to upload data to other peers, 
despite that they only have received a small fraction of the total content. To 
optimize availability of all content the peers request those pieces that they see 
are in most demand among the peers to which they are connected. This policy 
is called Local Rarest First (LRF) and has shown to be a simple yet efficient 
way of improving block availability in most circumstances (Bharambe, Herley 
et al. 2006).  

2.2.2 Components of a BitTorrent system 

A BitTorrent file distribution system requires the following components: 

• An ordinary web server 

• A static .torrent file containing meta-information about the torrent 

• A BitTorrent tracker 

• An initial seed possessing the whole file 

• The end user web browsers 

• The end user downloaders 

Serving files using BitTorrent requires one additional centralized component, 
the tracker, compared to serving files using http. The BitTorrent tracker serves 
as the hub of the swarm, allowing the clients of the system, the peers, to find 
other peers interested in the same data. During the time which a peer is 
downloading it is called a leecher, when the peer is done downloading but still 
serving the file, the peer is called a seeder. A BitTorrent download is initiated 
when the user downloads a .torrent file and supplies it to a BitTorrent client. 
The .torrent file can be downloaded using any file-transfer method; the most 
common way is to download the .torrent file from an ordinary http-server. 

The .torrent file contains administrative information about the torrent; 
including the address of the tracker. The tracker keeps track of the peers 
currently associated with each of the torrents currently served by the tracker. 
Each new peer queries the tracker to get information about other peers 
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interested in the same torrent. The tracker returns the addresses of randomly 
selected peers as response to the query. The tracker will also remember the 
address information about the querying peer, to be able to return that address 
when queried by other peers interested in the same torrent. The BitTorrent 
protocol allows the tracker to specify how often a peer is allowed to query for 
new peers. Trackers usually limit the peers to send one query every 300 to 600 
seconds. This query rate is too low to be able to perform measurements of end-
hosts at a high rate, and the BitTorrent client used by BitProbes takes a unique 
approach to increase the rate at which new peers are discovered without 
violating the BitTorrent protocol. 

2.2.3 Protocol information 

All BitTorrent clients have to adhere to the BitTorrent protocol. The protocol 
specifies how clients communicate with each other, and is well documented. 
This has allowed a large number of BitTorrent clients to be developed by users 
that do not like or wish to improve the main-line client. For the purposes of 
Internet measurements two parts of the protocol specification are important. 
The specification for when to send data to other clients and the instructions for 
how to notify other clients that a piece has been received. All information in 
this section is based on version 1.0 of the BitTorrent specification (Cohen 
2002). 

2.2.3.1 Choking, unchoking and optimistic unchokes 

For peer-to-peer file sharing applications to be efficient there must be 
incentives for the participants to contribute recourses to the system. In 
BitTorrent this is achieved via a Tit-For-Tat (TFT) approach. The core of this 
approach basically mandates; if you send data to me, I will send data to you. 
This has the effect that the more a peer contributes to the swarm, the faster the 
download rate of that peer will be. When a peer decides to start sending data to 
another peer, the sending peer is unchoking the receiving peer. If that peer later 
notices that it does not benefit from the data exchange the sending peer stops 
transmitting data, the receiving peer is said to be choked.  

The problem with a pure TFT approach is that it provides no reason for a peer 
to unchoke a newly joined peer as that peer does not have any pieces to upload 
and will not be able to reciprocate. To cope with this, BitTorrent uses 
optimistic unchokes that are designed to aid in the bootstrapping of new peers. 
Each time period, usually 30 seconds, each peer looks over its relations with 
other peers and chokes the peer that has sent it the smallest amount of data. It 
then randomly unchokes a new peer in its peer-set. The peer-set is the peers to 
which the peer has active TCP connections to. This serves two purposes: firstly 
it helps to bootstrap new peers so that they can contribute their resources. 
Secondly, it allows each peer to search for other peers with which it can have a 
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profitable relationship. The peer getting unchoked will hopefully reciprocate 
allowing a data transfer to occur in both directions. 

For the purpose of end-host measurements, the optimistic unchokes are crucial. 
BitProbes relies entirely on optimistic unchokes, and therefore the behavior of 
the BitTorrent client, running on the measurement nodes, is optimized to 
maximize the possibility of being optimistically unchoked. The key 
observation is that keeping the measurement node in the peer-set of as many 
peers in the swarm as possible maximizes the probability of getting unchokes.  

2.2.3.2 Bitfields and “have” messages 

BitTorrent is a request driven protocol. Each peer requests pieces from the 
other peers in the swarm. Each peer is responsible for notifying the other peers 
in its peer-set at to which pieces it has. These are the pieces the other peers can 
then request. This information is distributed in two ways.  

During the handshake between two newly connected peers an optional BitField 
message can be sent. This message is as many bits long as the total number of 
pieces in the torrent. The BitField contains a 1 at the indices where the peer has 
the corresponding piece and zeros at all other positions. This allows newly 
connected peers to efficiently update each other’s views of which pieces that 
are available for request. 

The other message type is the “have”  message. Every time a peer successfully 
receives a piece, it sends a “have” message to all the peers in its peer-set. This 
tells the other peer that the corresponding piece now is available for download. 
It is in the interest of each peer to advertise their pieces as quickly as possible 
to the peers in their peer-group since it makes the peer more interesting and 
therefore increase the chances of being unchoked. 

By monitoring the rate at which a peer sends out “have” messages it is possible 
for the other peers in the swarm to infer the download rate of that peer. This is 
done by multiplying the rate at which “have” messages are sent by the size of 
each piece. This information is useful for end-host measurements since it 
allows a very conservative estimate of the download capacity of the host. This 
information can then be used to eliminate evidently erroneous measurements 
done with other techniques. 

Unfortunately, from the standpoint of end-host measurements, the “have” 
messages are sent in the same TCP-stream as all other information sent 
between peers. This includes the actual data stream which can result in blocks 
of 16 Kbytes to be queued in front of “have” messages. Because of this, the 
time which “have” messages are received by the other peers might not 
correspond to the exact time at which the peer received the piece.  
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2.2.4 Favorable properties of BitTorrent for Internet 
measurements 

End-hosts running BitTorrent have many properties that make them amenable 
to Internet measurements. The most important one are: 

• Because the way the tracker is implemented it is possible to connect to 
a significant portion of the peers in a swarm. The tracker has 
knowledge of all peers in the swarm and will provide peers with lists 
of other peers upon request. This list is a random subset of all peers in 
the swarm, which makes it possible to extract a large portion of the 
swarm’s population by repeatedly querying the tracker for new peers. 

• When connecting to a BitTorrent swarm, the other peers in the swarm 
will send data to the newly connected peer as a part of the optimistic 
unchoke bootstrapping mechanism. This allows measurement nodes to 
receive data without providing any data in return. During the time of 
which the TCP-connection is active, it is possible to perform 
measurements on the end-host. 

• BitTorrent is immensely popular. BitTorrent has a large user group that 
frequently uses it to download files. Recently several large companies 
have started to use BitTorrent as a way of distributing content 
(Crawford 2005). This is a way for them to improve user experience by 
providing faster downloads as well as to externalize bandwidth costs. 
BitTorrent shifts the cost of content distribution from the content 
providers to the Internet Service Providers. This makes it probable that 
the use of BitTorrent will increase in the future, which is good for 
opportunistic measurements. 

• BitTorrent provides the ability to track other users download rate by 
monitoring their “have” messages. This information is useful as it 
provides a conservative estimate of the download capacity of other 
users. 

2.3 Measurement theory 
To be able to perform accurate measurements it is important to have and 
understanding about current research in the area. In this section I will provide 
an overview over the previous tools and methods that can be used in BitProbes. 

2.3.1 Topology 

The topology of the Internet can be discovered using two techniques, the 
traceroute based technique and the IP Record Route based technique.  
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2.3.1.1 Measurements with traceroute 

The goal of the traceroute tool is to attempt to follow the path an IP packet 
takes through the network. It sends packets with increasing IP time to live 
(TTL) values. The IP TTL field specifies how many hops through the network 
a packet is allowed to propagate. Each time the packet passes through a router 
the TTL field is decremented by one. The router that decrements the TTL field 
to zero sends an ICMP “time exceeded” message to the source of the message 
and discards the packet.  

To figure out the address of all routers a packet passes through on the path to 
the destination, the program starts by sending a packet to the destination with a 
TTL value of one. The first router on the path will decrement the TTL to zero 
and therefore send back a time exceeded message. This message is received by 
the traceroute application and the source of the message is displayed to the 
user. traceroute then continues with a TTL of 2 and so on. The original 
traceroute sends UDP packets to a random port on the remote host. When the 
target host receives the UDP packet it will responds with an ICMP “port 
unreachable” packet. This is the sign that the traceroute has reached the target. 
For the traceroute to work the port on the target host must be unused, not 
firewalled and the target must allow outgoing ICMP port unreachable packets 
(Jacobson 1988). 

2.3.1.2 Measurements with IP record route 

The IP Record Route (RR) option is described in RFC 791 (ISI-USC 1981). It 
allows the source of a packet to request all intermediate routers to store their 
address in the header of the packet. When the packet reaches the destination it 
contains the path of which the packet traversed the network. The main 
drawback with IP RR option is that it only stores the first 9 hops of the path. 
Many paths on the Internet are longer than this and can therefore not be 
entirely mapped with IP RR. 

The advantage with IP RR is that is records the address of the outgoing 
interface of the router, the interface from which the router sends the packet to 
the next hop. This differs from a traceroute which records the address of the 
incoming interfaces of the router. By using both traceroute and IP RR it is 
therefore possible to get gather more complete information that yields a higher 
quality mapping of Internet paths (Sherwood and Spring 2006). 

2.3.2 Available bandwidth and loss 

For many applications knowing the available bandwidth and loss-rate of an 
end-host can provide valuable information about the expected performance of 
that host. One of the main disadvantages of employing BitTorrent users as 
targets for the measurements is that there is a risk that the fact that the end-
hosts actively participate in a BitTorrent swarm affects the measurement 
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results. For measuring the loss this is certainly the case. Since TCP uses loss 
events as markers that the link is congested, it is difficult to know if the loss is 
caused by congestion or link quality. Because of this is it difficult to derive an 
accurate loss-rate measurement from end-hosts using the technique described 
in this paper.  

For measurements of available bandwidth the measurements become affected 
by the fact that the end-host is participating in a BitTorrent swarm. The peers 
in a BitTorrent swarm are encouraged to saturate their connection to minimize 
their download time. Measurements of available bandwidth during this time 
will results in a low available bandwidth, which is true at the time but it is also 
difficult to draw any conclusions about the amount of available bandwidth 
once the hosts leaves the BitTorrent swarm. It is believed that most end-hosts 
have a low utilization of their Internet connection most of the time, which 
makes the bandwidth capacity of a link a better measure of expected 
performance than available bandwidth. 

2.3.3 Latency 

The latency of a path is the time required for a packet to traverse it. The term 
latency is in literature often used interchangeably with terms such as Round 
Trip Time (RTT) and ping. In this report I will use the term latency to describe 
the RTT of a path. 

There is a couple of ways to find the latency of a path. The classic way is to 
send ICMP Echo Request packets to the destination and wait for the echo 
reply. This operation is described in RFC 791 (ISI-USC 1981), which also 
states that “every host MUST” implement this functionality. The ping 
application sends echo requests and records the time taken before the reply is 
received; the time is then displayed to the user. To use pings to measure 
latency is the first choice, and also the way latencies are measured in the 
Internet core. Sending pings to end-hosts is unfortunately less straightforward. 
Many end-hosts are behind firewalls which filter ICMP traffic, making the 
ping application less useful. To make matters worse, many firewalls also notify 
the user about the incoming ICMP packet which might lead to abuse letters 
being sent to the researchers responsible. Policies disallowing pings to end-
hosts are therefore typical on measurements platforms such as PlanetLab. 

Another way to measure latency is to use application level latency. This means 
sending a packet and recording the time for an application level response to be 
received. This can for example be the time taken for the TCP handshake. When 
a TCP connection is initiated the client sends a TCP SYN packet to the 
destination. The destination then acknowledges the packet with a TCP SYN 
ACK packet. The time required for this is usually slightly longer that the time 
required for an ICMP ECHO Request / Response. In spite of this, it is a useful 
way to record the latency of a path without sending any ICMP packets. 
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2.3.4 Bandwidth capacity  

Measurements of topology and latency are uncomplicated compared to 
measurements of bandwidth capacity. Measuring the bandwidth capacity in 
packet switched networks is an active research area with new methods being 
published frequently. I will in this report give an overview of the current status 
in the subject. So far research in the area of bandwidth capacity can be grouped 
into two different techniques: one packet and packet pair technique. 

2.3.4.1 The one packet technique 

The one packet technique was first proposed in (Bellovin 1992) and can be 
summarized as follows: the propagation delay of a packet is a sum of the 
following delays: signal speed, queuing delay and transmission delay.  

 

Figure 5: The one packet technique. Ideally one packet of each probe size 
traverses the network without experiencing cross-traffic. By looking at 
minimum delay packets, the bottleneck bandwidth can be inferred.  
Figure source: (Saroiu, Gummadi et al. 2002) 

 

• Signal delay; the time required for the signal to propagate in the 
physical medium. In fiber the speed is roughly two thirds of the speed 
of light. This delay is constant as long as the path between the hosts is 
the same.  

• Queuing delay can be assumed to be constant if the link has no cross 
traffic. In the presence of cross traffic the queuing delay can be coped 
with by taking a large number of measurements and using the ones 
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with the lowest delay. This measurement is assumed to have 
propagated through the network without any queuing delay. 

• Transmission delay is the time it takes to transmit the data over the 
network. This delay varies with the bandwidth capacity of the link. In 
an ideal network this delay should increase linearly with packet size. 

By varying the packet size and measuring how quickly the packet traverses the 
network, the bandwidth capacity can be inferred. The probe which has the 
smallest Round Trip Time (RTT) is assumed to have suffered least queuing 
from cross-traffic. An illustration of the one packet technique can be seen in 
Figure 5. 

2.3.4.2 The packet pair technique 

The packet pair technique was introduced by van Jacobsen in (Jacobson 1995). 
The idea is that packets that are sent back to back by the source often will 
traverse the bottleneck link back to back. When the packets then exit the 
bottleneck link and continue into a link with higher capacity they will be 
spread out. As illustrated in Figure 6 the delay between these packets when 
they arrive to the destination will then be proportional to the bottleneck link 
bandwidth. 

 

Figure 6: The packet pair technique. The bottleneck introduces a distance 
between packets that is proportional to bottleneck bandwidth capacity. 
Figure source: (Saroiu, Gummadi et al. 2002) 

The packet pair technique is also sensitive to cross traffic. If the packets are 
queued on intermediate routers on their way from the source, the 
measurements can both indicate a higher or lower bandwidth capacity than the 
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true capacity. If the second packet is queued, the result will be an 
underestimate. If the first packet is queued after the bottleneck link it will 
result in an overestimate. To cope with the problems of cross traffic a 
Probability Density Function (PDF) is computed. By searching for peaks in the 
PDF it is possible to find the inter-arrival times of packets that traversed the 
network without any queuing. It is assumed that cross traffic will have a more 
random distribution while the measurements without cross traffic will have a 
more compact distribution (Lai and Baker 2001). An example of the PDF of a 
flow experiencing cross traffic can be seen in Figure 7. 

 

Figure 7: Probability distribution of a flow from a high capacity host to a host 
with lower capacity. Limited queuing is experienced after the bottleneck link. 
Figure source: (Katti, Katabi et al. 2004) 

To get even more information about the bandwidth capacities along the end-to-
end path, recent tools also take mode gaps into account. A mode gap is the 
distance between common packet inter-arrival times. By looking for 
reoccurring distances it is possible not only to find the bandwidth capacity of 
the bottleneck link, but also to find the capacity of up to 3 bottlenecks on the 
path. The way this works is that the packets traversing the path often are 1500 
bytes large, that is the Maximum Transfer Unit (MTU) of standard Ethernet. 
Cross-traffic will therefore cause queuing in discrete 1500, 3000, 4500 Kbytes 
lengths and so on, corresponding to a queue of 1, 2, 3 … packets. Because of 
this the packet inter-arrival times will have a probability distribution similar to 
the one in Figure 8. The figure shows two different queuing delays, the 
dominant one at 1.2 ms, indicating a bottleneck bandwidth of 10 Mbit/s. Then 
a distinct mode gap of 0.12 ms indicating that packets often get queued at an 
additional link where the time needed for a 1500 byte packet to traverse is 0.12 
ms. This indicates that the second bottleneck link has a capacity of 100 Mbit/s. 
(Katti, Katabi et al. 2004) 
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Figure 8: Probability distribution with mode gaps. Packets are queued because 
of cross-traffic after the bottle-neck link.  
Figure source: (Katti, Katabi et al. 2004) 

The packet pair technique has the requirement that the intermediate routers use 
First In First Out (FIFO) queuing. If the bottleneck router uses another queuing 
policy the measurements will be inaccurate. 

2.3.5 Overview of existing tools for bandwidth capacity 
estimation 

There are currently three tools that all perform capacity measurements with 
high accuracy. Two are passive, MultiQ and NetTimer, and one is active, 
PathRate. All these tools, when running in their most accurate modes,  are 
capable of measuring the path capacity within 10% of the true capacity 85% of 
the time. 

2.3.5.1 Passive tools 

MultiQ 

MultiQ, (Katti, Katabi et al. 2004),  is a tool developed at Massachusetts 
Institute of Technology designed to find the bottleneck bandwidth capacity 
from TCP traces. Specifically, it is designed to obtain accurate measurements 
while only requiring traces from the receiver side of the TCP connection. 
MultiQ use the packet pair technique to find the bottleneck bandwidth 
capacity. By introducing the Equally-spaced Mode Gaps (EMG) algorithm in 
addition MultiQ also has the ability to find additional bottleneck amount the 
path, finding non minimum capacity bottlenecks on 64% of paths. 

MultiQ has an accuracy that is as good as Pathrate, the most accurate active 
tool. The accuracy of MultiQ is also comparable to the accuracy of NetTimer 
when NetTimer operates in RBPP mode, that is when NetTimer has access to 
the packet traces from both then sender and the receiver. Because of the 
accuracy for receiver side traces this is the tool used for measurements of 



Background 

17 

upload capacity of end hosts in BitProbes. To allow future change of the 
algorithm used to measure bandwidth capacity, all timestamps of incoming 
large packets are save and stored.  

MultiQ has the disadvantage that measurement of the downlink capacity of the 
end-host is fairly inaccurate. The paper states that 70% of the measurements 
are within 20% of their true value. This big difference in accuracy is because 
the only information accessible to the measurement node is the inter-arrival 
times of incoming TCP ACK packets. This introduces a new source of error 
since the ACK might have been queued on their way back to the measuring 
node. Many TCP implementations also use TCP delayed ACK, as specified in 
(Allman, Paxson et al. 1999). This causes the receiver to send an ACK only 
every other packet which decreases the number of data points by a factor of 2. 
The fact that the data uploaded by our system is very limited also makes an 
ACK based approach infeasible. To be effective the amount of data uploaded 
must be significant enough to generate many pairs of back-to-back maximum 
size packets. This is not the case in the current system. 

For the purposes of this system, the MultiQ technique works very well for 
measurement of end-host uplink bandwidth capacity. For measurement of 
downlink capacity it is less suitable and therefore another method to measure 
the download bandwidth of end-hosts had to be developed. The design of this 
tool is presented later in the report. 

NetTimer 

NetTimer, (Lai and Baker 2001), was created at Stanford University and is 
designed to enable content providers to vary the size and quality of content 
vary depending on the bandwidth of the path. There is no reason to try to 
stream high quality video to a receiver that only has a dial up internet 
connection. NetTimer use kernel density functions (Scott 1992) to eliminate 
measurements where cross traffic might have affected the result. The NetTimer 
measurements can be performed in different modes. Receiver Based Packet 
Pair (RBPP), first described in (Paxson 1997) is the most accurate mode, but 
requires packet traces from both the sender and the receiver. Because of this 
limitation this mode cannot be used in this system.  

For the purpose of this paper the most interesting modes are the Receiver Only 
Packet Pair (ROPP), first described in (Lai and Baker 1999), and Sender Based 
Packet Pair (SBPP). ROPP look at the inter-arrival times of incoming data 
packets. SBPP is using transport or link layer acknowledgements to infer the 
arrival times of the data packets. These modes have the same properties and 
limitations as the corresponding modes in MultiQ with the difference that they 
are slightly less accurate.   
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2.3.5.2 Active tools 

The active tools can be classified into two: tools that require the person 
measuring to have control of both end hosts of the path measured, and those 
that only require control of one of the hosts. The tools that require both end 
points have the advantage that they generally are more accurate than the ones 
that only require control of one end point. The disadvantage is obviously that 
control over both end points is required.  

Pathrate 

Pathrate, (Dovrolis, Ramanathan et al. 2004), is an active tool that utilizes the 
packet-pair technique. It requires control of both hosts, so the method can not 
be used by BitProbes. Pathrate is very accurate, so it is despite this limitation 
interesting to study it. When measuring the end-to-end bandwidth capacity 
between two hosts, Pathrate sends a large number of packet-pair probes. The 
inter-arrival times of these packets in each probe is then recorded. To handle 
queuing from cross-traffic Pathrate use a technique much similar to the 
technique used by MultiQ based on the distribution of inter-arrival times. Since 
Pathrate has control over both end-hosts it is possible to send a large number of 
probes, resulting in accurate measurements. The capacity measured by Pathrate 
is comparable to the accuracy of MultiQ and NetTimer making it the most 
accurate active tool studied in this report.  

SProbe 

SProbe, (Saroiu, Gummadi et al. 2002), is a tool developed at the University of 
Washington used to measure the bandwidth capacity in uncooperative 
environments, and therefore only requires control of one host. SProbe sends a 
probe of two TCP SYN packets with a large payload (1460 bytes). The probe is 
sent to a closed port on the remote host. It then uses the fact that the remote 
host will respond with a RST packet when it receives a packet on a closed port. 
Unfortunately many hosts are behind firewalls, which will make them 
unresponsive to this. 

Since the packets sent are large they will be queued up at the bottleneck link. 
The RST packets sent by the remote host are small leading to the assumption 
that they will not be queued at any intermediate router. Therefore the time 
between the RST packets received at the probing host should be the same as 
the time between the SYN packets received by the remote host. To improve 
handling resilience to cross traffic SProbe sends the two large packets within a 
train of small packets. If the small packets are reordered the measurements is 
discarded because of cross traffic. This way SProbe can filter probes that have 
experienced cross-traffic. 

SProbe has an accuracy of 80% within a factor of two and 60% within 10% of 
the bandwidth as estimated by NetTimer.  
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The main disadvantage with SProbe is that the probes easily can trigger 
Intrusion detection alarms causing trouble for researchers using the tool 
extensively. If a service generates too many complaints it might be suspended 
from PlanetLab. The goal is that the system described in this paper eventually 
will run on PlanetLab, which makes any obtrusiveness unacceptable. The fairly 
inaccurate results are also a problem. Because of these two problems SProbe is 
not used by BitProbes.  

CapProbe 

CapProbe, (Kapoor, Chen et al. 2004) developed at University of California at 
Los Angeles, combines the packet-pair technique with the one packet 
technique. It only requires control of one side of the path which makes it 
eligible for measurements of end-hosts. The authors observe that a packet pair 
that produces an over- or under-estimate must have been queued by cross 
traffic. To cope with this, CapProbe only marks probes as valid if they 
experience minimal delay during the transit over the network. This makes it 
possible to achieve good accuracy with a limited number of probes. The 
number of probe pairs sent varies between 40 and 100.  

The probes used in the paper are ICMP echo requests, but the authors have also 
been able to incorporate probes in regular TCP stream. The disadvantage with 
ICMP echo probes is that the receiver will respond with an ICMP echo reply 
which will contain the same payload as the echo request. This means that the 
packets going to the target will have the same size as packets going from the 
target. Because of this the current implementation of CapProbe only measures 
the link of the host with the smallest capacity.  

The CapProbe paper also states that CapProbe functions poorly when the 
amount of cross traffic exceeds 50% of the link capacity. This is because the 
possibility to get a sample where no queuing occurred gets smaller as the 
congestion of a link increases. This makes CapProbe unsuitable for the 
measurement of hosts participating in BitTorrent swarms, our target 
environment, since these hosts tend to saturate their upload bandwidth. 
Because many end hosts have asymmetric connections to the Internet, these 
hosts will saturate their upload capacity while still having available download 
capacity. In an environment which is favorable for CapProbe it is as accurate 
as Pathrate. 

A possible modification to CapProbe that would allow it to measure the 
downlink capacity while not suffering from low capacity uplink is to send TCP 
SYN packets to unused ports, much the same way as SProbe does. The target 
host would then send TCP RST packets back and the inter-arrival time between 
these would indicate the inter-arrival time of the original probe packets. The 
probe packets can be as large as 1500 bytes, while the RST responses will be 
only 40 bytes large. Unfortunately, a large number of TCP SYN packets to 
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unused ports have a tendency to trigger IDS alarms, which makes this solution 
unsuitable for BitProbes. 
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3 System design 
This chapter gives the reader a short introduction to the design of 
BitProbes. The goals of the system are presented, as well as a 
description the target environment in which the system will operate. The 
chapter also contains short descriptions of the operation of the system to 
give the reader an understanding of how the system works.  

The purpose of BitProbes system is to provide measurements of end-hosts to 
the iPlane. An overview of the system is presented in Figure 9. I start by 
discussing the requirements of BitProbes. 

• Accuracy: It is important that the measurements made have sufficient 
quality to make them useful for the clients of the iPlane. 

• Wide coverage: For measurements of end-hosts to have high value, a 
significant number of measurements must be made. Hosts that are 
close in IP-space have a high probability to have similar connection 
properties. The more measurements made, the higher is the probability 
to find a measurement close to any given IP address. 

• Resource efficiency: The parts of the system that are running on remote 
nodes must consume a small amount of resources.  

• Unobtrusiveness: The end-hosts measured must not be probed with 
anything that can be mistaken for an intrusion attempt. 

• Scalable components: The components of the system that are 
centralized must be able to support a large number of remote nodes. 
When running on PlanetLab, up to 500 remote nodes could be used. 
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3.1 Overview 
Measurements of end-hosts are more difficult than measurements of the 
internet core. As mentioned earlier, end-hosts are often behind firewalls which 
make them unresponsive to the measurements probes sent. Some end-hosts 
also run software that trigger alarms when any unusual network activity is 
happening. Probes used for active measurements of Internet characteristics 
look very different from normal Internet traffic, and might trigger alarms on 
the end-hosts. This causes the owners of the hosts to wonder what caused the 
alarms, to then look at the firewall logs, and to often misinterpret the probe as 
an intrusion attempt. This results in e-mails being sent to abuse departments at 
the ISP from which the probe came (Saroiu, Gummadi et al. 2002). Because of 
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this, there are often policies against active probing of end-hosts on distributed 
testbeds, and since this system is designed to run on PlanetLab (PlanetLab 
2006) on which probes to end-hosts are prohibited (Spring, Peterson et al. 
2006) another approach must be taken. 

Instead of active probing, the system relies on opportunistic measurements of 
hosts that it is connected to. The number of measurements possible is therefore 
closely tied to the number of hosts to which the system has connections. One 
way to achieve a high connection count is for example to co-locate the 
measurements software on servers that already have a large number of clients. 
This has the disadvantage that it is necessary to persuade the owners of these 
servers that it is in their interest to agree to run the software. Instead I have 
taken a more active approach. 

Each day thousand of Internet users use the popular peer-to-peer file 
distribution application BitTorrent to download files on the Internet. These 
files include for example Linux distributions, videos and music. BitTorrent 
allows a person with a low-end Internet connection to serve content to a large 
number of people. This is achieved by utilizing the upload capacity of 
everyone downloading the file. This feature has made BitTorrent very popular 
and some sources state that over one third of all Internet traffic in 2004 was 
BitTorrent transfers (Parker 2004). By joining BitTorrent swarms, it is possible 
for measurements nodes to connect to the hosts associated with that swarm 
thereby allowing measurements of those hosts. 

3.1.1 Finding end-users to utilize as targets 

The key to achieving good coverage of end-hosts is to make sure that the 
BitTorrent swarms connected to have a large number of members. Fortunately, 
many websites that provide files available for download over BitTorrent also 
specify how many users that currently is associated with that specific torrent. 
By connecting to the swarms with the highest number of users it is possible to 
direct the measurement nodes towards the swarms that have capability to 
provide a large number of measurements. To be able to connect to BitTorrent 
swarms a .torrent file is required. A .torrent file is a file that contains all 
information necessary for a BitTorrent client start downloading a file. To get 
the .torrent files, popular homepages that provide links to these files are 
crawled. These files are then distributed to the measurement nodes so that they 
can start to join swarms and attract traffic. 

3.1.2 Attracting traffic 

Many of the available techniques to transparently measure properties of an 
Internet path require a data transfer to already exist between the target and the 
measuring node. The way BitProbes attract traffic is to participate in 
BitTorrent swarms by having the measurement host run a modified BitTorrent 
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client. The client is modified in such way that it does not store or serve any of 
the content provided in the actual BitTorrent swarm. This allows the system to 
connect to a larger number of swarms since the risk of serving copy-righted 
content is eliminated.  

A second modification I made to a regular BitTorrent client is to increase the 
rate at which it connects to new end-hosts. Many BitTorrent swarms limit the 
rate at which new peers are received, which decreases the number of possible 
hosts a measurement node can be connected to. To increase the number of 
connected hosts, all measurement nodes monitoring the same swarm inform 
each other about the users of the swarm. This allows them to connect not only 
to the clients they discovered themselves, but also to the clients discovered by 
other measurement nodes. 

The reason why it is important to have a high connection count is that 
BitTorrent clients prefer to exchange content with other clients that previously 
have provided them with content. Since the measurement nodes do not have 
any content to provide, they have to rely on the other ways to get the clients to 
send data to them. Fortunately, the way the BitTorrent protocol works, it is 
required by the clients to send data to at least one randomly chosen host to 
which it is connected, this is called an optimistic unchoke. By being connected 
to a large number of hosts, the possibility of being unchoked accumulates 
causing each measurement node to receive a large amount of traffic. 

3.1.3 Analyzing incoming TCP-streams 

Attracting traffic is not enough to perform Internet measurements. By closely 
monitoring the rate at which packets sent by each end-host are received at the 
measuring node, it is possible to collect information about the Internet path 
between them. It is also possible to inject extra packets into an existing stream. 
These packets will look like legitimate TCP packets both to the end-host being 
probed and to any intermediate firewalls. These extra packets can be sent in 
such a way that they for example record the path between the end-host and the 
measuring node.  

3.1.4 Analysis of log data 

The BitTorrent protocol also requires that clients send information about their 
download progress to other clients to which they are connected. These 
messages contain information that when analyzed provide the rate of which 
each client in the swarm is receiving content. This is useful information since it  
provides a conservative estimate of the download capacity of the client. To 
collect this information, each of the measurement nodes logs all BitTorrent 
protocol events. These logs are then analyzed at a central location, the reason 
for this being that a global view of the activity in the swarm makes it possible 
to infer each client’s download rate with higher accuracy. 
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4 Implementation 
This section describes the different components of the system. The 
section is divided into three subsections. The section titled centralized 
components describes components that are designed to run at University 
of Washington to manage the system. The distributed components run on 
measurements nodes and are designed to be able to run on PlanetLab. 
The section titled measurements describes the methods that were chosen 
to provide measurements, the methods that would provide the most 
accurate measurements given the environment in which BitProbes 
operates. 

4.1 Centralized components 
The centralized components are all running at University of Washington. These 
applications are designed to orchestrate the measurements by assigning jobs to 
measurements nodes. All centralized components are designed to be able to 
support up to 500 measurements nodes. The centralized tasks that require more 
computation power, such as the analysis of logs, can be split up on several 
local machines to make it possible to support a large number of measurement 
nodes.  

4.1.1 Web parser 

The web parser consists of a number of scripts that crawl popular BitTorrent 
websites. The crawler then adds all links to .torrent files it can find to a queue 
for later download. It also records how many seeders and leechers each torrent 
has. The accuracy of the numbers stated on tracker websites has been studied 
(Pouwelse, Garbacki et al. 2005) and is reliable. The number of seeders and 
leechers is useful when assigning torrents to measurement nodes since it allows 
both to assign more nodes to popular torrents as well as a chance to avoid 
unpopular torrents. 

The torrents that pass the requirements of popularity are then downloaded. To 
avoid overwhelming the BitTorrent website, the downloader sleeps 5 seconds 
between downloads. This allows a download rate of roughly 6 torrents per 
minutes which is fast enough. The web parser is designed to make a new pass 
for torrents every 6 hours to make sure that recently added torrents get 
measured, as well as to remove old inactive torrents. 
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4.1.2 Torrent dispatcher 

The torrent dispatcher has two tasks; making sure to reassign new torrents to 
the measurement nodes, done every 2 hours, and ensuring that the logs from 
the previous run is sent back for analysis. 

Every two hours the torrent dispatcher runs a script on all measurement nodes 
that shuts down all currently running torrents, starts new torrents, and moves 
the old logs to the log store. To decrease log file size the logs are stored in a 
binary format as well as getting compressed with bzip2 before being 
transferred over the network. 

4.1.3 Log analyzer 

The log analyzer is a simple application that read the bzip2 compressed log 
files, analyses the information and inputs it into the measurement database. 
Information collected includes all BitTorrent protocol messages received by 
the measurement nodes. An anonymized version of the logs will be made 
public to the research community. 

The log analyzer has information from all measurement nodes participating in 
a single torrent. It can get more accurate information about for example a 
single peers download rate by monitoring the times of which that peer sends 
BitTorrent have messages. Another reason to use logs as the way to transfer 
information about the BitTorrent swarms participated in is that the information 
collected later can be used in other studies. These logs can provide more 
information than what is usable by the iPlane, and I invite other researchers to 
study these logs to look at how BitTorrent functions. Hopefully statistics 
derived from the logs will provide researches with information about how to 
design more efficient file distribution protocols than what is available today. 

The drawback from using logs is that the information collected is delayed up to 
one hour before it is entered in the database. This only applies to connection 
information and not the actual measurements, but one could imagine a scenario 
where information about a large number of disconnects could indicate a 
problem in the network. Timely information could better help service providers 
to locate problems in the network rapidly. 

4.1.4 Shadow tracker 

Since the system relies on optimistic unchokes to obtain measurements it is 
advantageous to be connected to as many peers as possible. To possibility to 
get unchoked by each individual peer is constant, but by being connected to a 
large number of peers the number of unchokes per hour increases. A challenge 
is that trackers often specify how often a peer can contact it to receive a list of 
new peers. This time is usually 10 minutes. To increase the number of peers 
each measurements node is connected to, I developed a shadow tracker 
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infrastructure. Each time a measurement node receives information about a 
peer from the tracker; this information is reported to the shadow tracker. The 
shadow tracker is then queried every minute by the measurement nodes for 
new peers. This allows the measurement nodes to share the peers received from 
the tracker and thus be connected to a higher number of peers, providing more 
measurements from more vantage points. 

4.1.5 Database 

The database, running MySQL 5 (MySQL 2006), provides the interface 
between the end-host measuring system and the rest of the iPlane. All 
measurements of end-hosts are inserted in the database, together with 
timestamp information to allow the iPlane to filter out old data.  

To decrease the load on the database, the updates are sent in batches every 
minute. This might seem unnecessary but has proven important in practice. An 
early version of the client sent each insert as an individual SQL INSERT and 
that caused the database to become overloaded. Despite upgrading the database 
machine to a Dual Xeon 2.2 GHz server with 4 GB of ram, update latencies of 
30 seconds were not uncommon. Now the inserts are made with SQL prepared 
statements, followed by ADD BATCH followed by EXECUTE. This allows 
the database to only recompute indices once per batch, as compared to once per 
insert, and has decreased the load on the database to almost zero. 

4.2 Distributed components 
The distributed components are designed to allow the system to take advantage 
of multiple computers spread across the Internet. These run on measurement 
nodes that are often under high load. Because of this the distributed 
components are designed to require only a small amount of resources.  

4.2.1 Modified BitTorrent client 

The goal of the BitTorrent client is to make Internet hosts send data to the 
measurement node. To do this it must look like any other BitTorrent client to 
the peers in the swarm. Therefore the base code of the modified client comes 
from the popular BitTorrent client Transmission (Transmission 2006). This 
client was chosen because it is written in pure C and has an extremely small 
footprint. One instance of the client only consumes 40KB of memory and 
almost no CPU (0.1-0.3% of a 2 GHz x86 CPU). Because of the small footprint 
many instances of the client can run on each measurement node 
simultaneously. During experiments each node has been running 40 instances 
of the BitTorrent client without difficulty. The large number of clients running 
on each measurements node has the positive effect that random assignments of 
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torrents to measurement nodes work well. Some of the torrents might not be 
very active, but then the client is consuming almost no resources.  

The BitTorrent client is modified in several ways to make it more suitable to 
use for measurements.  

• First, all disk I/O code is removed, since I only want to download data, 
not upload anything. All incoming data packets are discarded instantly.  

• Second, the client disconnects peers after it has received 1 MB of data. 
This number was chosen since the tools used to measure download 
capacity, MultiQ, only see slight improvements in accuracy when the 
TCP traces are longer than a couple of hundred packets. 

• Third, additional code to enable communication with the shadow 
tracker is added, this is made to allow measurement nodes connected 
to the same swarm to share peer information. As soon as a peer is 
received from the normal tracker, the IP address and BitTorrent port of 
that peer is added to the shadow tracker. This allows peers to quickly 
build up a large active peer set, which increases the rate of which the 
measurement node gets optimistically unchoked by the other peers in 
the swarm. 

4.2.2 Packet analyzer 

The purpose of the packet analyzer is to monitor the incoming packets and take 
appropriate action for certain events. The packet analyzer uses libpcap to 
capture packets direct from the network stack, allowing the application to get 
kernel-level timestamps from when the packets arrived. The measurements are 
very sensitive to the accuracy of the timestamps of incoming packets, and in 
the highly loaded environment on which the measurements are running user-
level timestamps would provide less accurate results. More about the 
importance of accurately recorded times of incoming packets is mentioned in 
the evaluation section. The downside of kernel-level timestamps is that they 
require root access on the host machine. This might be a problem in some 
environments, but in the target environment for this system, PlanetLab, it is not 
a problem. 

To allow measurement of the upload capacity of remote hosts the timestamp of 
all incoming packets on each path is recorded. To save space only the packets 
of the largest packet size seen so far is stored. That is, suppose a host sends a 
train of packets with sizes (42, 42, 1500 and 1500) only the arrival-times of the 
two largest packets are stored. The reason for this is that only the large packets 
are of interest for the MultiQ algorithm. As soon as the packet analyzer sees a 
TCP RST (reset) packet for a certain source IP:port pair, it assumes that that 
host disconnected and starts the MultiQ algorithm on the packet stream for that 
specific IP:port pair. When it gets the result from the algorithm the information 
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is added to the queue of database updates that will be sent to the central 
database. 

The packet analyzer runs an individual thread that is responsible for managing 
connections with the database. Since the load on the database can be high with 
more than 300 clients doing frequent inserts, all communication with the 
central database runs in a separate thread to avoid the entire application to have 
to wait for database traffic. This is also important since the central database is 
located at the University of Washington and the round trip time form UW to 
for example the PlanetLab nodes in Sunet is around 200 ms. 

4.3 Measurements 

4.3.1 Measurement of upload capacity with MultiQ 

In peer-to-peer systems such as Skype and especially BitTorrent the uplink 
capacity is the most important link characteristic of end-hosts. For the Skype 
case there is no reason to try to forward a call through an intermediate host if 
that host does not have the bandwidth capacity to support the data stream. For 
normal calls the capacity required is so limited that most hosts can support it, 
but for video calls capacity information is essential. In the BitTorrent case it is 
often advantageous for a client to connect to high capacity peers since they will 
have a higher bandwidth / peer ratio than clients with lower capacity 
connections. 

To obtain the upload capacity of the end hosts the method proposed in MultiQ 
(Katti, Katabi et al. 2004) is used. The algorithm is implemented as a part of 
the Click modular router project (Kohler, Morris et al. 2000) and was extracted 
from the source tree of that project. To fit the purposes of BitProbes the code 
was converted into a stand-alone application. The stand-alone MultiQ 
application takes a file of inter-arrival times and outputs the discovered 
bottlenecks.  

Since the iPlane is interested in the bottleneck capacity of the path, I only store 
the minimum of the discovered bottlenecks in the database. All the 
measurement nodes are well connected, and it is assumed that the measured 
capacity is the last-hop capacity of the end-host measured. It would be possible 
to use the other discovered bottlenecks and try to map them to another link in 
the path, but there are several reasons why we avoid this. First there is the 
problem of asymmetric paths, wherein the path to the end-host, the forward 
path, differs from the path from the end host, the reserve path. Unfortunately, 
the reverse path cannot be measured with any traceroute style tool, and the 
bottlenecks measured are the bottlenecks on the reverse path. Second the 
accuracy of the measurements of the additional bottlenecks, the tight links, is 
much lower than the measurements of the least capacity bottleneck. The 
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MultiQ paper states that it finds 64% of the tight links, misses 21% and 
mislabels 15%.  

4.3.2 Measurement of download capacity 

4.3.2.1 Passive listening to BitTorrent have messages 

A conservative estimate of a BitTorrent peer’s download capacity is its 
download rate. Because of the way the BitTorrent protocol works it is possible 
for any peer in a swarm to calculate the download rate of any peer to which it 
is connected. Each time a BitTorrent peer receives a piece, it will notify the 
other peers to which it is connected, in order to advertise that it has the piece so 
other peers can request it. By monitoring the rate of which a peer sends “have” 
messages it is possible to know that peer’s download rate.  

Common BitTorrent piece sizes are 64KB, 128KB and 256KB but pieces as 
large as 4MB are used. The size of the blocks limits the accuracy of this 
technique. It is not possible to get a higher accuracy of the measurements than 
the piece size divided by the time windows of which the piece is assumed to 
have been downloaded.  

4.3.2.2 TorrentProbe 

TorrentProbe is a probing tool that encapsulates CapProbe like measurements 
in the BitTorrent handshake. The implementation is not completed, and it will 
therefore not be evaluated in this report.  

The goal is to be able to measure the download capacity of end-hosts. This can 
be done by using a probing technique, for example CapProbe (Kapoor, Chen et 
al. 2004). As mentioned in section 2.3.5.2, CapProbe has a couple of 
drawbacks when used on end-hosts:  

• CapProbe relies on ICMP packets, packets that often are filtered by 
end-hosts as well as might cause intrusion alarms.  

• CapProbe has difficulties to measure asymmetric links (Chen, Sun et 
al. 2005), links on which the bandwidth capacity in the uplink direction 
differs from the capacity in the downlink direction.  

Both these drawbacks can be solved by instead performing the probing with 
TCP SYN packets, much as in SProbe (Saroiu, Gummadi et al. 2002). Sending 
large amounts of TCP SYN packets might still trigger intrusion alarms though, 
which makes this solution unfeasible.  

Instead I propose to encapsulate the probes in a BitTorrent application level 
handshake. The regular BitTorrent handshake is 68 bytes long, which is not 
long enough to be able to perform any probing. During the handshake a client 
can send an optional BitField message, the size of this messages is as many bits 
as there are pieces in the torrent + a padding to make it a real number of bytes. 
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The number of pieces in a torrent varies, but is often between 500 and 1,000. 
This corresponds to a length between 60 and 120 bytes. Fortunately it is 
perfectly normal for a client to send a BitTorrent “have” message for each 
piece in the torrent. Each have-message is 5 bytes long, which brings up the 
total size to between 2.56 Kbytes and 5 Kbytes. This makes it possible to send 
between 8 and 14 probe packets in a single handshake. 

The relationship between the probing packet size and a TCP ACK packet size 
limit the degree of asymmetry in bandwidth capacity that this technique can 
handle. A TCP ACK packet is 40 bytes, so a probing packet size of 320 bytes 
makes it possible to correctly measure a download link that has up to 8 times 
higher capacity than the upload link. For most purposes this limitation is 
acceptable. 

Because the way TCP works the measured hosts do not have to send an 
acknowledgement per incoming packet, it is enough to acknowledge every 
other packet as specified in the Delayed Acknowledgement section of RFC 
2581. When sending probes it is preferable to get an acknowledgement per 
packet sent, especially in this case since the number of probes that can be sent 
is limited. Fortunately, the same RFC also requires TCP to send an ACK each 
time an out-of-order packet is received.  
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Figure 10: Operation of TorrentProbe. Probe packets are reordered to disable TCP Delayed 
Acknowledgements on the remote hosts. Probe pairs are sent pack to back and the inter-
arrival time of acknowledgements indicate remote host download capacity. 
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To force the end-host to send an ACK after each probe the packets are 
reordered. A detail illustration of the packet order can be seen in Figure 10. As 
illustrated in the figure, the probing host first performs a regular TCP hand-
shake. After that it delays the sending of packet three, but instead sends the 
fourth packet, causing the remote hosts to resend the acknowledgment of the 
second packet. The probing host sends packet three immediately after it sends 
packet four, in the hope that both packets will traverse the network back-to-
back. When the remote host receives packet three, it will send an 
acknowledgement to the probing host that it now successfully has received all 
packet up to four. This way the remote host will send an acknowledgment after 
each packet, despite that TCP Delayed Acknowledgments is enabled. It is 
important that the actual payload of each packet remains the same, the only 
change is in which order the packets are sent.  

After the probes have been sent the data is post-processed. This is done the 
same way as in (Kapoor, Chen et al. 2004) using minimum delay packets. If a 
packet has been queued, the queuing can introduce error in the measurements. 
To avoid this, only the packets which have traversed the network in the least 
time is used. The accuracy of TorrentProbe should be comparable to the 
accuracy of CapProbe.  

4.3.3 Topology mapping 

4.3.3.1 Topology mapping with tracreroute 

The standard implementation of traceroute sends UDP packets with increasing 
TTL. This works well in most circumstances. However in the case of large 
scale measurements of end hosts, this unfortunately have some negative 
properties.  

• Most firewalls are configured to not send the ICMP port unreachable 
reply when they receive a UDP packet to an unused port. This has the 
effect that it is difficult to know when the traceroute has reached the 
destination. 

• Traceroutes from several vantage points to the same end host can 
trigger alarms in firewalls. This might result in angry emails being sent 
to the researchers responsible. During the initial run on PlanetLab this 
happened and traceroutes were disabled for the rest of that run.  

• To make sure that a host only is sent one traceroute requires that 
information is shared among all measurement nodes. For example a 
central server database could be queried before each traceroute is 
initiated. This would solve the previously mentioned problem, but with 
the downside that only one route to every given destination is 
discovered. 
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To cope with all problems described above the following solution is used. A 
modified version of tcptraceroute (Toren 2006) is used to send the traceroute in 
the already existing TCP stream to a given host. The tcptraceroute application 
was modified in such a way that it allows the TCP sequence and TCP 
acknowledgement numbers to be specified from the command line. The 
traceroute is sent as ACK packets with the same source IP, source port, 
destination IP, destination port, and proper sequence numbers as a previously 
sent packet. These trace packets are interpreted as duplicated ACKs and are 
therefore ignored at the target host. The result is a traceroute that is completely 
transparent to the target. This technique is the proposed method for mapping 
the Internet with IP record route in (Sherwood and Spring 2006) and during 
their experiments they performed traces to over 22,000 end-hosts without 
receiving a single complaint. 

 

4.3.3.2 Topology mapping with IP record route 

Recent work in (Sherwood and Spring 2006) demonstrated that combining 
normal traceroutes with probes that use the IP Record  Route (RR) option 
provides an even better understanding of the network topology. The IP RR 
option has rarely been used in network research since it was assumed that it 
was disabled by most routers. The RR option also has the limitation that it only 
allows the first 9 hops to be discovered. Sherwood and Spring show that the 
first assumption is wrong, IP RR is enabled in most routers on the Internet. 
They also show that when performing the probes from PlanetLab 89% of all 
hosts the probed can be reached in 9 hops or less. 

The IP RR has the advantage that it captures the IP of the outgoing interface on 
the intermediate routers. Traceroute usually captures the incoming interface. 
The combination of the two giving a more complete topology map can be seen 
in Figure 11. This makes it easier to map discovered IPs to physical routers 
which is useful for services such as the iPlane.  
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Figure 11: Internet mapping with both traceroute and IP RR. Both incoming 
and outgoing IP addresses of intermediate routers are discovered. 
Figure source: (Sherwood and Spring 2006) 
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5 Evaluation 
This section first describes how the system was evaluated for both 
potential coverage and for the quality of the results. Then the results 
that were gathered are presented, results that quantify the potential of 
the method. Some of the statistics about the data collected is also 
presented. 

5.1 Initial evaluation on PlanetLab 
The system was initially evaluated to verify the feasibility of the method. In 
terms of coverage and quality of results an initial evaluation were done on 
PlanetLab. A Java version of the client was deployed on 367 PlanetLab nodes. 
In this setup a crawler was run every hour that parsed well-known public 
websites for .torrent files. From these the 120 most popular swarms were 
chosen. The reason for why only 120 swarms were chosen, despite that over 
360 measuring nodes were available, was to provide multiple measurement 
vantage points in each swarm. The number of measurement nodes designated 
to a swarm was proportional to the number of peers participating in it. Each 
measurement node was running only one instance of the modified BitTorrent 
client.  

The main difference between the first version and the second version of the 
client is that the first one was written in Java. While this had the benefit that it 
was easy to develop, the main disadvantage was that it consumed much 
memory. Memory is a very scarce resource on PlanetLab and therefore it was 
only possible to run one instance on the client per PlanetLab node. The second 
difference was that this client kept a small cache of recently received pieces in 
memory. Data in this cache was offered for upload so that the client would not 
have to depend only on peers optimistically unchoking it to initiate data 
transfer. This difference had the effect that each instance of the old client was 
collecting roughly 5 times more measurements than the current client. On the 
other hand the new client is only using 0.1% of the amount of memory of the 
old client.  

5.1.1 Coverage 

To verify that it would be possible to cover a large number of Internet hosts, 
coverage data was examined for 48 hours. The rate at which measurements 
were gathered is summarized in Figure 12. During this 48 hour period, the 
measurement nodes connected to 301,595 distinct IP addresses. The number of 
unique IPs for which upload bandwidth capacity estimates was gathered were 
70,428. Connections were initiated with IP addresses in 3,591 distinct ASs and 
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19, 639 distinct BGP prefixes. The run covered end-hosts in 160 different 
countries. These initial results showed that opportunistic measurements 
obtained from BitTorrent makes it possible to measure a large number of end-
hosts and that the hosts measured come from many different parts of the 
Internet. 

 

Figure 12: Rate of increasing connections and measurements during the 
48 hour run on PlanetLab. 

5.1.2 Clustering of results 

Even if the coverage of end hosts is significant, it is far from complete. Instead, 
it is assumed that hosts that are close in IP space also will have similar link 
characteristics. By clustering hosts based on IP prefixes it is possible to 
generalize results for prefixes to which there is only a few measurements. The 
validity of this assumption is explored in Figure 13. For every /24 prefix in 
which measurements was performed to multiple end-hosts from the same 
vantage point, a ratio was computed of the maximum to the minimum 
measured bandwidth capacity. For 70% of /24 prefixes, the capacities 
measured differ by less than 25%. During the 48 hour measurement period, a 
total of 61, 294 /24 prefixes were covered, which are representative of 
measurements to over 15 million end-hosts. 
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Figure 13: Maximum / minimum quota of discovered upload capacity of hosts 
located within the same /24 subnet. 

5.2 Results from UW machines 
The results presented in this section were collected by 8 machines running at 
the University of Washington. Each of these was running 40 instances of the 
modified BitTorrent client. The results presented were collected between 
September 2nd 2006 and September 9th 2006. Two popular web-sites1  
providing links to .torrent files was crawled every 12 hours, and the 100 most 
popular torrents discovered was assigned to the measurements nodes. 

5.2.1 Rate of connections 

The rate of which new hosts are discovered is an important measure of the 
success of the technique described in this report. Firstly it gives an indication 
of with what speed new hosts are discovered. Secondly it indicates whether the 
system begins to deplete the pool of clients using torrents hosted on the web-
sites crawled. 

The rate of new end-hosts in presented in Figure 14. Since the rate of new 
connections shows no sign of flattening out, I conclude that the pool of end-
hosts using torrents from the two web-sites is significantly larger than the 
number that can be covered by this system in a week. It is therefore possible to 
increase the rate of newly discovered end-hosts by adding more measurement 
nodes to the BitProbes system. Since BitProbes is designed to eventually run 

                                                      
1 The web-sites crawled were http://www.mininova.org and 
http://www.thepiratebay.org. 
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on PlanetLab, it will be interesting to see how an increase from 8 to over 350 
measurements nodes will increase the rate at which end-hosts are discovered.  

During the week analyzed in this report, the measurement nodes initiated 
connections to, or were connected from, a total of close to 500,000 unique IP 
addresses, each connection providing the opportunity to perform a wide range 
of measurements. 

 

Figure 14: Rate of increasing connections to unique IP addresses 

As data for longer time periods become available I suspect that the system 
eventually will see a decrease in the rate of which new end-hosts are 
discovered. When this happens it will be necessary to find new web-pages 
providing .torrent files. Currently both web-sites crawled are European, but as 
new web-sites from other continents are added, it will be possible to extend the 
period for which new hosts are discovered at a high rate. It should be noted that 
the current the web-sites were chosen because both of them are immensely 
popular and both serve content in several languages, causing them to have to 
global reach. 

5.2.2 Rate of capacity measurements 

Measurement of the upload bandwidth capacity of remote hosts is the most 
difficult measurement performed by this system. To be able to infer the upload 
capacity of end-hosts, a TCP flow with a significant number of packets has to 
be sent by the end-host to the measurement node. The flow is then analyzed by 
MultiQ resulting in a measurement of the bandwidth capacity. All flows with 
more than 100 full-size packets are analyzed, and during the week covered in 
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this report, significant flows from 176,487 unique IP addresses were received. 
In 96,080 of these (54%), MultiQ is able to tell the upload capacity.  The rate 
which new end-hosts are successfully measured is presented in Figure 15. 

 

Figure 15: Rate of increasing measurements of unique IP addresses 

As can be seen in Figure 15 the number of measurements is increasing steadily 
during the 7 days analyzed.  The number of cumulative measurements is the 
number of unique IP addresses that has been measured. As seen the system 
manages to successfully measure the upload capacity of roughly 100,000 
unique IPs in a week, which means that roughly 1 in 5 discovered end-hosts 
upload capacity is measured. As the system runs the number of measurement 
should get closer and closer to the number of discovered hosts, since the rate of 
which new hosts are discovered can be assumed to decrease over time. 

5.2.3 Network coverage  

In terms of network coverage, the results show a trend of depleting the source.  
During the 7 day period, hosts in 21,032 BGP unique prefixes were connected 
to. A BGP prefix corresponds to an entry in the global BGP routing table. As 
seen in Figure 16 the number of prefixes discovered flattens out significantly. 
During the 24 first hours of operation almost half of the total number of 
prefixes was discovered. This shows that even though the swarms joined have 
a large number of end-hosts associated with them, most of these hosts are 
located in a limited section of the Internet. The reason for this could be that the 
web-sites used to collect .torrent files focus on types of content that are of 
interest only in some parts of the world. Finding web-sites that either have a 
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more diverse clientele, or a clientele that is disjoint from the other websites 
crawled will hopefully mitigate this problem. 

 

Figure 16: Network coverage 

The coverage of BGP Autonomous Systems (AS) shows similar properties as 
the coverage of BGP prefixes. During 7 days a total of 3763 ASs were 
connected to, with close to half of them being discovered in the first 12 hours 
of operation. The method to increase the number of ASs covered is the same as 
with BGP prefixes. Since one AS often corresponds to one Internet Service 
Provider (ISP), the key in getting higher coverage is to find sources with 
material that either is interesting globally, or finding more sources that target 
different markets than the sources currently used. It should also be noted that 
the activity and size of different ASs varies, with the effect that some ASs will 
be difficult to reach with this method. On the other hand will the ASs measured 
be the biggest and most active ones, causing them to be the most valuable to 
measure. 

5.2.4 Geographic coverage  

To see what level of geographic coverage that is possible with BitTorrent 
measurements, I used a tool from CAIDA (CAIDA 2006) used to map IP 
addresses to countries. During the 7 days analyzed in this report, IP addresses 
from 165 different countries were connected to. A chart of the 22 countries that 
received the most connections can be seen in Figure 17.  
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Figure 17: Number of connections to the top 22 countries 

The figure shows that some countries are better covered than others, suggesting 
that the source web-pages are better know in some countries. Surprising is for 
example the high number of measurements of Swedish hosts, despite the small 
population of that country. I attribute this fact to two causes; the websites used 
have been mentioned in mainstream media in Sweden, making it know by the 
general population. The other cause is that the percentage of broadband users 
differs in different countries. Additionally it can be noted the geographic 
coverage is impressive, hosts from 165 countries spreading the entire globe has 
been connected to. 

5.3 Capacity distribution 
To know the distribution of upload capacities of users of peer-to-peer systems 
is important when designing new peer-to-peer systems. Since the upload 
capacities of a large number of end-hosts were measured, I take the opportunity 
to present some of the results in this report. Since the measurements are of a 
large number of hosts running BitTorrent, is can be assumed that this 
distribution is fairly representative for users of BitTorrent and for users of 
peer-to-peer swarming systems in general. The upload capacity distribution 
measured is presented in Figure 18. 
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Figure 18: Upload capacity distribution of BitTorrent users 

As seen a significant majority (70 %) of the hosts have an upload capacity 
between 350 Kbit/s and 1 Mbit/s. Only 10% of hosts have an upload capacity 
of 10 Mbit/s or more. What also can be noted is that the 5% of hosts with 
bandwidth capacities between 55 Mbit/s and 110 Mbits/s, contribute with 64 % 
of the available resources in the system, suggesting that successfully 
incorporating the resources of the high capacity clients is a important trait of 
efficient peer-to-peer systems. Further analysis of the data is needed before any 
conclusions about the efficiency of BitTorrent can be presented, and that is not 
within the scope of this report. The data will be made public, making it 
possible for other researchers to answer questions such as; what is the 
correlation between a BitTorrent peers upload capacity and download rate. 

5.4 Validation of capacity 
measurements 
The bandwidth capacity measurements rely on inter-arrival times observed 
between data packets in the connections I maintain with BitTorrent peers. As 
previously mentioned the MultiQ technique is used to infer end-to-end 
bottleneck bandwidth capacity from these inter-arrival times. Although the 
performance of MultiQ presented in previous studies is encouraging, with 
85 % of measurements based on data packets within 10 % of the true 
bottleneck capacity, the properties of PlanetLab hosts might introduce 
additional problem. The system is designed to eventually run on PlanetLab and 
that environment can be extra challenging for Internet measurements. To see if 
the purposed technique would work in the PlanetLab environment an 
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additional experiment was set up. The results were then compared to results 
made by S³ (Lee, Sharma et al. 2005).  

 
Figure 19: Bandwidth capacity distribution of 10,879 paths between PlanetLab 
nodes as measured by the iPlane and by S3.  

A test torrent was set up and 357 PlanetLab nodes joined the torrent. The paths 
between the PlanetLab nodes were then opportunistically measured using the 
same technique that is used to measure end hosts. The experiment resulted in 
10,879 paths in common with measurements made by S³ on that same day. 
Figure 19 compares the bandwidth capacities measured by the two methods. 
The measurements made by the iPlane closely match those of S³ for capacities 
less than 10 Mbps. At higher bandwidth capacities, they are only roughly 
correlated. This difference is probably from S³ using Pathrate that, as noted 
previously in the paper can be a very accurate tool. Unfortunately for Pathrate 
to work accurately, the CPU on the system should be idle, preferably Pathrate 
should be the only running application (Dovrolis 2006). The reason for this is 
that Pathrate uses user-level timestamps, which will be inaccurate in an 
environment under heavy load. On PlanetLab the load on the system is high, 
load averages of above 10 are common. The inter-arrival times recorded by 
BitProbes come from kernel-level timestamps, which are more accurate in 
environments with high load. When measuring high bandwidth path accurate 
time-stamping is crucial. A 1500 byte packet will have a transfer time of only 
0.8 ms. On paths with capacity higher than 10 Mbit/s, the MultiQ technique 
records many paths as either around 45 Mbit/s (T3) or around 100 Mbit/s 
although with a small systematic under-estimation. Since both these are 
common capacities for large corporations and institutions these results are 
plausible for the environment measured. 
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5.5  Results summary 
The results collected by BitProbes show that the use of BitTorrent to attract 
traffic from end-hosts is a successful method. Using 8 servers for one week has 
yielded connections from close to half a million end-hosts from 165 countries. 
The coverage in terms of Internet geography is also impressive, with hosts 
from over 20,000 different entries in the global BGP routing table and over 
4,000 unique Autonomous Systems. All these connections provide the 
opportunity to unobtrusively measure the remote host. The most challenging 
measurement performed by BitProbes is measurements of the end-hosts upload 
capacity. This measurement requires the end-host to send a significant flow of 
maximum size TCP packet to the measuring node. BitProbes has during the 
week analyzed in the report successfully inferred the upload capacity of close 
to 100,000 different IP addresses.  

The results also show that hosts that are close to each other in IP address space 
also, with high probability, have similar connection characteristics. By 
analyzing the bandwidth distribution of hosts within the same /24 IP subnet, it 
can be concluded that measurements of one host in a /24 subnet is a useful for 
prediction the bandwidth capacity of other hosts is the same subnet. In one 
week, BitProbes successfully measured the upload capacity of hosts in 69,026 
different /24 subnets, corresponding to over 17 million hosts. 
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6 Related work 
In this section I investigate previous systems that have taken an 
opportunistic approach to measurements, focusing on advantages and 
disadvantages of the methods used in the systems described. I note that, 
while the systems have been successful for their purposes, none of them 
is able to perform measurements to such a large number of 
uncooperative end-hosts as BitProbes. 

6.1 PlanetSeer 
PlanetSeer (Zhang, Zhang et al. 2004) monitor users of the CoDeeN (Wang, 
Park et al. 2004) CDN, to detect failures on the Internet. PlanetSeer monitors 
existing TCP connections and notes when an unexpected disconnect event 
occurs. When noticing a disconnect PlanetSeer tries to probe the remote node 
from different vantage points, and if a node is reachable from some vantage 
points but not others, it is noted as a route abnormality. 

The coverage of PlanetSeer is on the order of 9 to 12 thousand clients peer day, 
with no information about what fraction of these that are clients that are new to 
the system. There is also no information in the paper whether all these clients 
come from unique IP addresses or if many of them originate from the same 
source, but (Sherwood and Spring 2006) note that when monitoring the 
CoDeeN network for a week, 22,428 unique IP addresses were seen. The 
system described in this report initiates around 500,000 connections to unique 
IP addresses per week. The measurement infrastructure described in this paper 
covers more than one magnitude more end-hosts than PlanetSeer.  

6.2 TCP sidecar 
TCP-sidecar (Sherwood and Spring 2006) performs traceroutes to end-hosts to 
be able to construct an accurate router-level topology of the Internet. Since 
traceroutes often cause IDS alarms, the traces are embedded into existing TCP 
connections. TCP sidecar use TCP connections from two sources:  

• Passive monitoring of CoDeeN, resulting in measurements to 22,428 
unique end-hosts per week.  

• Downloading robots.txt from web-servers. This method yielded 
166,745 unique IP addresses, although this method obviously can 
cover a significant higher number. 
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Downloading content of web-servers is a technique that is promising when the 
goal is to record topology. For measurements of bandwidth capacity there are 
some drawbacks with this method. The robots.txt file usually fits in one IP 
packet, making analysis of the TCP stream to infer bandwidth capacity 
impossible. Instead it would be necessary to download larger or multiple files 
from each web-server. This is possible, and putting the PacketAnalyser in front 
of a web crawler would definitely yield a large number of measurements, 
making it reasonable to investigate this more thoroughly. In this report 
however, the investigation is left for future work. An other drawback of this 
method is that web-servers generally are better connected than ordinary end-
hosts, causing any statistics, for example bandwidth capacity distribution 
generated with this method to be biased. 

6.3 Spurious Traffic 
By looking at unconventional sources of network traffic, (Casado, Garfinkel et 
al. 2005) is able to achieve great coverage for their measurements. The sources 
used include SPAM traffic, traffic from worms and automated scans, yielding a 
potential coverage of several hundred thousand IPs. For example the authors 
state that CAIDA received probes from 359,000 infected servers during the 
first Code Red outbreak. The authors use a similar suit of tools to perform their 
measurements, for example is MultiQ used to discover the bandwidth capacity 
of the end-hosts. Although this technique is promising in terms of coverage, it 
has some problems associated with it. 

• Traffic flow length. The amount of traffic sent to each host in for 
example an IP scan or a worm attack is very limited. This makes it 
difficult to use any of the existing passive tools to infer path properties.  

• Biased results. The hosts infected by worms are often unrepresentative 
for the Internet as a whole. For example, one of the most severe worm 
attacks, the SQL slammer attack, only infected servers running 
Microsoft SQL server. This causes any statistics derived from the 
measurements to be difficult to use in other studies.  

Even if measurements of BitTorrent users also show a biased view of the 
Internet, the bandwidth capacity of peer-to-peer users is more interesting for 
research than the bandwidth capacity of servers running Microsoft SQL. 

6.4 Planet Scale Software Updates 
In a paper from Microsoft Research (Gkantsidis, Karagiannis et al. 2006) 
geared towards the behavior of software updates, the authors had access to 
packet trace data from Windows Update servers. Although the paper did not 
focus on measuring Internet path properties they were able to present an 
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impressive coverage of Internet hosts. During the year during which the traces 
were collected, over 150 Million unique IP addresses were seen. Analyzing 
packet traces from update services certainly has potential to achieve great 
coverage, with the downside that the amount of traffic flowing from the end-
hosts to the servers is small, making measurements of end-host upload capacity 
difficult. On the other hand Microsoft has control over the application running 
on the client machines, making it possible for them to alter the behavior of the 
end-hosts. The paper discusses how a peer-to-peer distribution strategy would 
decrease the load on the update servers, and if that strategy is implemented it 
would be possible to incorporate measurement code into the update client 
allowing for better peer selection. In the paper the authors discuss grouping 
clients into distribution groups depending on AS. Since bandwidth capacity of 
end-hosts is very divers, varying between 36 Kbit/s dialup to 100 or 
1000 Mbit/s Ethernet it would improve download performance to not only 
group clients by AS but also to make sure that high capacity nodes are used 
more efficiently. 
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7 Conclusion 
In this report I have presented BitProbes, a system performing measurements 
to Internet end-hosts. BitProbes attracts connections from close to half a 
million unique end-hosts per week, connections that are used to 
opportunistically infer link latency, Internet topology and upload bandwidth 
capacity of the hosts. All these measurements are performed unobtrusively, no 
probes that might trigger IDS alarms are sent. I also present the design of a tool 
that utilizes the BitTorrent handshake and TCP packet reordering to 
unobtrusively measure the download capacity of end-hosts. The number of 
connections covered by BitProbes is more than an order of magnitude higher 
than what previous systems relying on opportunistic measurements have 
attracted, suggesting that the method used by BitProbes is successful. 

BitProbes attract traffic by connecting to swarms of the popular file-
distribution application BitTorrent. Results collected by BitProbes, show that 
the pool of end-hosts that can be measured using this technique is significantly 
larger than the close to 500,000 connected to during the week analyzed in this 
report. It also suggests that an even higher rate of measurements can be 
achieved if the number of measurement nodes is increased.  

The measurements collected by BitProbes are fed to the iPlane, allowing the 
iPlane to predict link performance not only for Internet core routes, but also for 
the link between two arbitrary end-hosts. By making it possible for 
applications to a priori know the properties of other hosts, the applications can 
choose which hosts to connect to based on metrics such as link latency or 
capacity. With this information it has been shown that the iPlane is able to 
improve performance of CDNs, voice-over-IP applications and BitTorrent. 

BitProbes, as a system, has exceeded expectations both in terms of rate of 
measurements and in terms of discovered hosts. It can be concluded that 
utilizing users of BitTorrent as targets for end-host measurements is an 
excellent method to unobtrusively perform measurements of large numbers of 
end-hosts. 
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Glossary 

AS Autonomous System 

A collection of networks and routers under control by the same 
entity sharing the same routing policy 

BGP Border Gateway Protocol 

Protocol used by Internet Service Providers to communicate 
routing information 

CDN Content Distribution Network 

A system for large-scale content distribution over the Internet 

FIFO First In First Out 

Queuing policy used by many Internet routers 

ICMP Internet Control Message Protocol 

Protocol used by Internet hosts to send control messages 

IDS Intrusion Detection System 

A system monitoring network activity to detect intrusion 
attempts 

IP Internet Protocol 

The protocol handling addressing on the Internet 

IP RR IP Record Route 

Option in the IP header asking routers to append the interface 
which packets exit to the packet header 

ISP Internet Service Provider 

Company or organization providing Internet access to end-users 

LRF Local Rarest First 

Piece selection strategy used by BitTorrent to make sure that 
the rarest pieces are downloaded first. 

MTU Maximum Transmission Unit 

The largest packet size that can travel over a link without 
getting fragmented 

RBPP Receiver Based Packet Pair 

NetTimer mode used when both sender and receiver traces are 
available. 

RFC Request For Comment 

Document describing Internet standards and drafts 
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ROPP Receiver Only Packet Pair 

NetTimer mode used when only receiver traces are available 

RTT Round Trip Time 

The time it takes for a packet to travel to a remote host plus the 
time it takes for the response to travel back to the source 

SBPP Sender Based Packet Pair 

NetTimer mode used when only sender traces are available 

TCP Transmission Control Protocol 

Reliable byte stream protocol used on the Internet 

TCP-ACK TCP Acknowledgement 

TCP packet type sent to acknowledge that data has been 
received successfully   

TCP-RST TCP-Reset 

TCP packet type used to terminate a TCP connection 

TCP-SYN TCP-Synchronize 

TCP packet type used to initiate a TCP connection 

TFT Tit-For-Tat 

Policy for trading resources in which the default state is trusted 

TTL Time To Live 

Field in the IP header specifying the number of hops a packet 
can travel before it is discarded 

UDP User Datagram Protocol 

Unreliable datagram based protocol used on the Internet 
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