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I. Introduction 
The goal of this project is to build a wireless ad hoc network using sound waves as the means for 
communication.  The signals are going to be sent with a microphone and received with a speaker.   

 

II. Requirements 
The system requirements are divided into three sets of increasing complexity.  These requirements will be 
addressed in three corresponding phases. 

Phase 1: Design and implement reliable communication between two PCs using a microphone and 
speaker.  

Phase 2: Design and implement robust ad hoc routing between a set of PCs using sound as their only 
means of communication.  

Phase 3: Design and implement efficient and fair resource control among a set of PCs using sound as 
their only means of communication.  



III. Key Design Concepts Outline 

Reliable Communication 
Note: See Phase 1 report for detailed justification for these design choices.  
 

1. Basic Communication 
• Signal encoding using frequency modulation at sender 
• Signal decoding PCM analog-to-digital conversion at receiver 
• Amplitude to frequency conversion using Fourier transform 
• Using clock signal to synchronize between sender and receiver (no clock drift) 
• Bit encoding using frequency pairs for 0 and 1 bits 
• Bit decoding using relative power difference on 0 and 1 frequencies 

 
2. Handling Transmission Errors 

• 8-bit Cyclic Redundancy Check (CRC) to ensure packet integrity at receiver 
• Positive Acknowledgements (ACKs) to notify sender about successful transmission 
• Stop-and-Wait retransmissions at sender to ensure reliable transmission 

 
 
Routing 
Note: See Phase 2 report for detailed justification for these design choices 
 

1. Addressing 
• Static 4-bit network addresses 
• No node discovery 

 
2. Ad Hoc Route Discovery 

• On-demand route discovery using broadcast flooding 
• Route caching to minimize control information 
• Process to recover from route failures using Route Error packets 

 
3. Forwarding 

• Local Route Table forwarding vs Source Route forwarding 
o Minimum Packet Size 
o Handling Route Loops 

 
Resource control 

1. Sharing Air 
• Carrier sense at the sender to detect channel availability 
• Exponential randomized back-off 
• RTS/CTS scheme was not chosen because it is only useful when data packet size is much 

larger than the RTS/CTS overhead (see page 10, “Sharing Air” for informal proof). 
• Because the audible sound channel is inherently lossy, transmitting very long packets is not 

practical, because of retransmission overhead, so RTS/CTS is not required. 
• Instead, we ensure max packet size using fragmentation and reassembly at the application. 

 
2. Attempt to hold down the unused air time and overhead traffic 

• Fast transmission rate achieved by efficient signal processing and use of multiple data 
transfer channels 

• No regular routing updates 
• Carrier sense, no back-off if free 
• No ACK if collision occurred at the receiver 
• Random exponential back-off 

 



3. Nodes wanting to send get to do so in a reasonable time 
• Fair backoff implemented by pausing the retransmit timer instead of restarting it, so nodes 

that have been waiting longer have shorter retransmit counter times  
 

Miscellaneous 
 
1. Tricks to reduce the need to retransmit 

• Most common reason for retransmission is for one bit in a couple of bytes per packet does 
not get recognized as either a 1 or a 0 

• Forward error correction using a parity bit per byte fixes this problem and dramatically 
reduces retransmission times 

 
2. High quality recovery from various errors and failures 

• Recognizing and discarding packets at MAC layer 
 

3. Survivability for "normal" changing conditions (intermittent obstructions, moving nodes, 
routing path changes) 
• Stop-and-Wait retransmissions to recover from intermittent obstructions and noise 
• Recover from node failure using Route Error packets and route re-discovery 

 
4. Survivability for abnormal changes ("jamming" by noise sources in "your" frequencies) 

• Mechanism to dynamically vary frequencies used for data transfer to recover from persistent 
noise in a particular channel 

 
5. Reducing overhead traffic by (e.g.) ranking choices by probability, or maintaining info on 

the current state of the network. 
• Route caching to minimize control information 

 
6. High performance (high bit rate, low errors) 

• Avg. Bit Rate = 128bits/sec 
• Avg. Error Rate = 10% 

 
7. Overcoming sound-specific limitations (supporting distance up to 6 feet between 

microphone and speakers) 
• Summing up FFT samples to cancel out white noise over distance 
• High-Frequency bands to avoid low-frequency constant noise sources (CPU fans) 

 
8. Internetworking with Mike’s Team’s network 

• We built a gateway to tunnel packets from one network to another 
• Connects two heterogeneous networks 

 Our network (N1): On-Demand Source-like Routing 
 Connected network (N2): Distance-Vector Routing 

• Application-level data tunneling, since there is no common network or transport interface 
• Transparent to nodes on both networks 

 Requests N1  N2: Gateway responds to route requests to any address in N2 
 Requests N2  N1: Gateway periodically broadcasts itself as a node that has a path to 

any address in N1 
 

9. Usability 
• To improve usability of our test application we implemented a GUI 
• Application/Network/MAC/Physical level message history 
• Destination/Message/Send Window for message entry 
• Automatically created network graph 



IV. Phase 1 Design 
Our design process focused on building the system from the ground up, starting with reliable 
communication and addressing, efficiency, ad hoc routing and resource control in later phases. Our 
design philosophy was to explore simple models first and through a method of iterative testing and re-
design to arrive at a final model.  Below we discuss main design decisions we had to make during Phases 
1 of this project.  We also anticipate alternative design decisions and additional optimizations.  
 
Basic Communication 

Basic communication was accomplished using the following principles: 
• Frequency Modulation 
• Pair-Frequency Bit Encoding 
• Multiple Channels 
• PCM Analog-to-Digital Conversion 
• Fourier Transform Amplitude-Frequency Conversion 
• Relative Power Bit Decoding 
• Clock Signal Synchronization 

 
We now explore these design principles in detail.  
 
Representing Bits 

Signaling 
Signal is generated using a microphone attached to a sound card.  We chose frequency modulation as 
the basic mechanism to accomplish signaling in our protocol.  Amplitude modulation was discarded 
because we are operating in a wireless environment and the amplitude of the signal depends on the 
distance of the receiver from the sender and this distance is not guaranteed to be fixed.  On the contrary, 
frequency of the signal does not vary with distance and can be recognized using Fourier Transform 
method in spite of noise.   
 
Encoding Scheme 
We chose to use a Pair-Frequency Bit encoding scheme to represent bits with signals.  This encoding 
scheme involves using presence of Frequency#1 to represent bit 0 and Frequency#2 to represent bit 1.  
An alternative was to use a single frequency and represent bit 0 with its absence and bit 1 with its 
presence.  We decided to discard this approach, because it seemed more susceptible to noise.  A 
completely different approach is to encode a signal using transitions.  We have not explored this option, 
because we were gave preference to simple design options first.   
 
Channel Utilization 
Clearly there are more than two frequencies available in the audible sound waves spectrum.  In order to 
take advantage of the full spectrum, we decided to design our system such that it can send signals on 
multiple channels at once.  For example, if there are 2 channels available for data transfer, we can send 8 
bits at the same time.  In practice we implemented 8 concurrent channels, however we also programmed 
the sender to dynamically fall back to using 4, 2 and 1 channel if needed (see Noise section). 
 
Detecting Bits 

Medium Sampling 
Medium sampling is performed continuously using a speaker attached to a sound card. Pulse Code 
Modulation (PCM) sampling technique used by the sound card digitizes analog signals and provides the 
results in an amplitude wave form.  Fast Fourier Transform (FFT) performed on this data outputs the 
power for each frequency at a point in time.  This metric can be used to decide whether a particular 
frequency was heard and thus to decode the actual signals that represent the bits.   
 
 
 



Signal Decoding  
To decide whether we see a 0 or a 1 on a particular channel, the receiver compares the relative power of 
the frequencies representing each bit. If the frequency representing bit 0 is above the noise threshold and 
the frequency representing bit 1 is not, the receiver decides that it detected a 0 bit (and vice versa for bit 
1).  If both frequencies are below the noise threshold, the receiver decides that there is no signal.  If both 
frequencies are above the noise threshold, the receiver compares relative strengths of the signals and if 
the difference is significant, chooses the more powerful one.  This method has worked fairly well in 
decoding the bits in absence of noise.  In addition, we made a couple of optimizations to account for 
distance and noise (see Noise section). 
 
Synchronization 

Clock Signal 
In order for the receiver to know that two subsequent bits that are the same were received, there needs to 
be a synchronization mechanism.  System clock cannot be relied upon for synchronization because of 
sound card sampling inaccuracy and process pre-emption.  This phenomenon is referred to as clock drift.  
We decided to deal with this issue by adding a clock signal.  The sender ensures that this signal 
alternates between a 0 and a 1 every time a bit is transmitted.  The receiver looks for transitions to 
determine when to read the next bit from each of the data channels.  An alternative is to encode 
transitions into the signal itself, such as Manchester encoding.  However, based on our minimalist design 
philosophy, we pursued a more straightforward approach. 
 
Transition Detection 
Transitions are detected using a FFT sampling interval that is at least 4 times less than the length of the 
signal.  If the receiver detects a 0 on the clock signal, the clock is set to 0.  If the receiver detects no 
change in the signal or no signal at all, it assumes there is no transition.  However, if the receiver detects 
a 1, there is a transition.  This approach has the danger of “losing ticks” when the receiver fails to detect a 
clock signal due to noise or inefficiencies in signal decoding.  We implemented an optimization to prevent 
the “losing ticks” phenomenon (see Noise section).  
 
Reliable Communication 

Reliable communication was accomplished using the following principles: 
• Cyclic Redundancy Check 
• Positive Acknowledgements 
• Stop-and-Wait Retransmissions 

 
Integrity Checks 

Packet Level Check 
Not all link-level signal loss can be prevented, so we built integrity checks into our packet structure.  In 
addition to source and destination addresses and the data payload fields, the packet will also include an 
8-bit Cyclic Redundancy Check (CRC) field that provides a mechanism for determining whether the data 
got corrupted during transit.  This field is calculated at the sender and re-calculated at the receiver after 
packet reassembly. 
 
Acknowledgements/Retransmissions 

MAC Layer Reliability 
We employ a Stop-and-Wait approach to ensuring reliability at the MAC layer.  It is a common practice to 
provide this level of reliability at the MAC layer in wireless environments because of the inherent 
unreliability of the channel.  The sender sends only one packet at a time and waits for an 
acknowledgement from the receiver before sending the next.  The receiver only sends the 
acknowledgement if the CRC check passed.  The sender employs a timeout mechanism to re-send an 
outstanding packet if it did not receive an acknowledgement.  We designed a 1-bit sequence number in 
the packet so that the receiver can distinguish when a packet is a re-transmission.  Since there is only 
one outstanding packet at a time, a 1-bit sequence number is sufficient.  



V. Phase 2 Design 
Ad Hoc Routing and Robust Communication was accomplished using the following principles: 

• Summing FFT Samples 
• High-Frequency Bands 
• Minimize transmission of routing control information 
• Minimize network packet size 

 
We now explore these design principles in detail.  
 
Robust Communication 

In phase 1 we implemented a stop and wait protocol to ensure reliable transmission.  However, in order to 
communicate effectively, hosts need to receive signals with a reasonably high probability of success.  In 
our project we are assuming that hosts need to be able communicate directly over a distance of up to 6 
feet.  In order to ensure reliable signal delivery over that distance, we enhanced receiver functionality in 
the following ways: 

• Summing FFT Samples 
• High-Frequency Bands 

Averaging FFT Samples 
The major challenge in transmitting over distance is the fact that the signal strength drops off 
proportionally to the square of distance while noise stays constant.  However, white noise does not 
maintain power in a single frequency over an extended period of time.  So, when we added up the noise 
over several FFT samples, we were able to recover the signal over distance.  

High-Frequency Bands 
Although we solved the problem of white noise by summing FFT samples, we experienced problems with 
constant room noise, such as ventilation and computer fans.  This noise is constant in certain frequencies 
and gets amplified when the signals are added up.  However, this noise is present primarily in lower 
frequencies.  By moving our data bands into high frequencies we were able to avoid sources of noise.   
 
Ad-Hoc Routing 

To accomplish routing we designed and implemented GORAN (Goran1 On-Demand Routing for Ad-Hoc 
Networks).  We arrived at this protocol by considering the following high-level goals: 

• Minimize transmission of routing control information 
• Minimize network packet size 

 
These goals reflect our attempt to reserve precious channel capacity for data transmission.  In GORAN 
routing we minimize transmission of routing control information by forming a route on-demand when a 
transmitting computer requests one.  To minimize packet size, we do not include the whole route in the 
packet transmitting the data, but rely on intermediate hops to forward the packet based on their route 
caches.  The down side of GORAN is that it requires extra time when establishing a connection for the 
first time.  We also made an assumption that the hosts are not mobile, however, GORAN would also 
perform well in a dynamic environment.  

Route Discovery 
Route discovery process requires three mechanisms: 
 

• Route Request.  If the source does not have the route to designation in its route cache, it 
broadcasts a route request (RREQ) packet to its neighbors.  If a node is not the destination, it 
adds itself to the route in the packet, updates its route cache with the route in the packet so far 
and forwards the request to the neighbor.  RREQ travels through the network until it reaches the 
destination.  We utilize a sequence number to avoid loops.  

 
                                                 
1 We name our system after Goran Ivanisevic who eventually won the Wimbledon Title after 13 tries.   



• Route Reply.  If the node receives a route request addressed to it, it forms a route reply (RREP) 
packet and sends it back to the source.  At this point the reply has a complete route from source 
to destination.  The intermediate nodes update their route caches again with the remaining path 
information.  Each node on the route now knows how to forward data from the source to 
destination. 

 
• Route Error.  If a MAC layer cannot forward data, it reports a link failure to the network layer.  The 

failed node forms a route error (RERR) packet and sends it back to the source of the data.  Every 
intermediate node removes failed link from route cache and forwards error packet to next hop 
back to the source, which also updates its cache upon receipt.  

 

Routing 
Once the route is known, routing is accomplished based on the information in the route caches.  The 
dynamic is illustrated in the figure below in the simple case of three hosts.   

• The source creates a network packet with the destination address in the “Destination” field and 
hands it off to the MAC layer, specifying next hop from route cache as a MAC layer destination 
address.   

• The intermediate node receives the packet, looks up next hop based on its routing cache, and 
passes it back to MAC layer with the next hop as the Mac layer destination address.  

• The destination node receives the packet and passes it to the application layer 
 

Host A Host B Host C

Transmit packet

Create network packet, "NetDest"=C

Application

Network

Request data send

MAC Encapsulate in MAC packet, "MACDest"=B

Physical

Transmit packet

Strip off MAC header, pass to network layer

MAC

Network

Receive packet

MAC

Check route cache for route to C

Physical

Encapsulate in MAC packet, "MACDest"=C

Physical

Strip off MAC header, pass to network layer

Application

Network

Receive packet

MAC

Strip off network header, pass to application

Physical

Receive data

 
Figure 1: Data Routing Protocol 

Although the illustration shows only three nodes, this protocol can scale to an arbitrary number of 
intermediate nodes. 
 



VI. Phase 3 Design 
Resource control was accomplished using the following principles: 

• No overhead of MACA 
• Parameterized maximum packet size 
• Reduced overhead traffic 
• Carrier sense at the receiver  
• Fast transmission rates  
• Random exponentially increasing back-off 
• Fair back-off  

We now explore these design principles in detail.  
 
Sharing Air 

In earlier phases we implemented carrier sense at the sender to detect channel availability.  If channel 
was deemed idle, the information was sent immediately.  Otherwise, a random back-off timer was set.  
This protocol did not address fairness, but it allowed for two nodes to “share air” in the basic sense.   

In this phase we attempted to improve our channel control algorithm.  First we considered MACA 
protocol, which was developed for packet radio networks.  We quickly realized that MACA will not be 
extremely effective in our environment for several reasons:  

Packet size must be small. The audible sound channel is inherently lossy, so when transmitting a long 
stream of data a bit eventually gets scrambled.  We implemented error correction that takes care of one 
bit per byte losses, but several bits per byte losses are not uncommon.  Thus, transmitting long packets is 
not practical; in our implementation we set our maximum packets size to 300 bits.    

Packet loss rate is high. Even when using smaller packets, loss rate is significant (~10%). 

Overhead of RTS/CTS is not justified for throughput.  Based on packet size limitation, we chose to not 
implement MACA resource control mechanism because it is only useful when data packet size is much 
larger than the RTS/CTS overhead.  In our case RTS/CTS packets would be on the order of 32 bits 
(addresses ~8, length ~8, control/sequence ~8, CRC ~8).  In ideal case, overhead of RTS/CTS pair is 64 
bits.  Furthermore, with every RTS packet loss the overhead increases. 

In idealized scenario when there were no collisions, CTS/RTS would not be necessary.  As the probability 
of collisions increases, the overhead of RTS/CTS becomes increasingly more justifiable.  We’d like to 
calculate the maximum rate of collisions per sec (X) for which the overhead of MACA is lower than the 
packet loss rate. We will use the following formula for our “back of the envelope” calculations. 

Time to transmit w/o MACA < Time to transmit with MACA 

Average number of bits required to transmit a packet w/o MACA NNM is  

N = Number of bits per packet = 300 
 Rloss = Rate of Loss = 0.1 
 Rcoll = Rate of Collisions = X 

NNM = N + N*Rloss+ N*Rcoll

This means that on average we send the bits in the packet and some additional bits depending on the 
rate of loss and collisions.  

Average number of bits required to transmit a packet NYM is  

N = Number of bits per packet = 300 
NRTS = Number of bits in overhead of RTS = 32 
NCTS = Number of bits in overhead of CTS = 32 

 Rloss = Rate of Loss = 0.1 
 Rcoll = Rate of Collisions = X 

NYM = (N+NRTS+NCTS) + (N+NRTS+NCTS)*Rloss+ (NRTS)*Rcoll



This means that on average we send the bits in the packet plus overhead RTS and CTS.  We experience 
losses on all three components, but we experience collisions only on RTS.  

It is easy to see that if Rcoll is zero, NNM is always more than NYM, because of additional RTS/CTS 
overhead. However, as Rcoll increases N*Rcoll becomes more significant and can justify the need for 
MACA.  To calculate this threshold, we calculate X - Rate of Collisions (Rcoll): 

Time to transmit w/o MACA < Time to transmit with MACA 

[N + N*Rloss+ N*Rcoll  ]*Rtrans < [(N + NRTS+NCTS) + (N+NRTS+NCTS)*Rloss+ (NRTS)*Rcoll ]*Rtrans

[300 + 300*0.1+ 300*X  ]*Rtrans < [(300 + 32 + 32) + 300 + 32 + 32)*0.1+ (32)*X ]*Rtrans

 X < 23% 

From above calculations, for rates of collisions under 23% our network achieves higher throughput than 
MACA. So for rates of collisions under 23%, RTS/CTS overhead offers no benefit in terms of throughput. 
For most realistic scenarios in a sparse network like ours is likely to be less than 23%, because packet 
sizes will vary and not necessarily be as large as the maximum packet size of 300 bits.  

To ensure that our rate of collisions is low, we implemented several optimizations to minimize collisions, 
increase throughput and ensure fairness: 

• Fast transmission rate (128 bits/sec) achieved by efficient signal processing and use of 
multiple data transfer channels  

• Parameterized maximum packet size that can be adjusted to reduce collision rate 
• No regular routing updates to reduce overhead traffic 
• Carrier sense at the receiver to detect channel utilization 
• Random exponentially increasing back-off to ensure turn taking 
• Fair back-off implemented by pausing the retransmit timer instead of restarting it, so nodes 

that have been waiting longer have shorter retransmit counter times  

Interoperability 

In this phase we implemented the gateway responsible for tunneling packets from our network to other 
networks with completely different requirements.  The gateway has the following features: 

• Connects two heterogeneous networks 
 Our network (N1): On-Demand Source-like Routing 
 Connected network (N2): Distance-Vector Routing 

• Application-level data tunneling, since there is no common network or transport interface 
• Transparent to nodes on both networks 

 Requests N1  N2: Gateway responds to route requests to any address in N2 
 Requests N2  N1: Gateway periodically broadcasts itself as a node that has a path to 

any address in N1 
Usability 

To improve usability of our test application we implemented a GUI that has the following features in one 
parent window: 

• Application/Network/MAC/Physical level message history 
• Destination/Message/Send Window for message entry 
• Automatically created network graph 



VII. Implementation 
We implemented our design using Java 2 Platform Standard Edition 5.0 programming language.  The 
rationale for the choice was the availability of Java Sound libraries, which greatly simplified signal 
processing tasks of this project and allowed us to focus on implementing the networking features.  
 
Software Structure 

The following diagram shows the modules we implemented within each networking layer.  
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Sender Receiver
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«uses»

«uses»

«uses»
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Gateway
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Other 

Networks

«uses»

Figure 2: High-Level Implementation 

Application Layer  

Application layer is responsible for presenting the user with a GUI application that allows controlling the 
sending and receiving of data.  We did not implement a transport layer, because we did not foresee 
implementing TCP-like functionality.  However, this layer can easily be introduced in our modularized 
structure.  Currently a specialized variant of an application layer takes care of gateway functionality 
described earlier.  
 
Network Layer  

On the sender side the network layer accepts bits of data from the application layer and passes them to 
the MAC layer.  On the receiver side the network layer accepts bits from the MAC layer and passes them 
to the application.  In addition ad hoc routing functionality is implemented at the Network Layer.   
 
 



MAC Layer  

On the sender side the MAC layer accepts bits from the network layer and packetizes them in preparation 
for sending.  On the receiver side the MAC layer accepts bits from the physical layer, reconstructs the 
packet and passes it to the network layer.  In addition, carrier sense, back-off and stop-and-wait 
retransmission mechanisms are implemented at this layer.  
 
Physical Layer 

On the sender side the physical layer accepts bit stream to send and converts it to a sound wave.  On the 
receiver side the physical layer accepts amplitude signals from the sound card and reconstructs the bit 
stream by examining the frequency spectrum.   
 

VIII. Testing 
We have successfully tested Phases 1-3 requirements using the following procedure. 

Procedure 

To test the operation of basic communication and reliability, follow these steps: 
1. Run TextApp.java <sender_address> on sender 
2. Run TextApp.java <receiver_address> on receiver 
3. Use GUI to send and receive messages 

 

Basic Communication 

Send one data packet to receiver.  Expect link level acknowledgement.  Retransmit if acknowledgement 
not received.  

Routing 

Send one data packet to receiver that is not within sender’s range.  Watch route discovery process and 
data transmission process.   

Interoperability 

Send one data packet to receiver that is on Mike’s network.  Watch the gateway pose as hosts on Mike’s 
network by responding to route requests to his network addresses.  Watch gateway forward packets to 
Mike’s network hosts.   

Congestion Control 

Scenario 1 – Flooding One Receiver 

Expected Results: 

S1 and S2 will take turns sending packets to R.  

Actual Results: 

S1 and S2 indeed took turns sending packets to R.   

Because in this case, S1 and S2 can detect when the other is 
transmitting, carries sense is sufficient to prevent collisions.  
Initial random back-off ensures with high probability that one of 
the senders will start first.  Once that happens, the other sender 
waits until the first sender is finished.  At this point, the waiting 
sender will have a shorter timeout (guaranteed by fair timeouts 
discussed before) and will transmit next, ensuring fairness.  

 



Scenario 2 – Hidden Terminal 

Expected Results: 

S1 and S2 will take turns sending packets to R.  

Actual Results: 

S1 and S2 indeed took turns sending packets to R.  
Although S1 and S2 could not use carrier sense to 
prevent collisions, they could take turns sending 
packets by using exponentially increasing 
randomized timeouts. Fairness was assured 
because timeouts allowed the node that has been 
waiting the longest to send first.  Efficiency was 
assured because although some collisions occurred 
initially, timeouts corresponded to length of time 
necessary to send packets and transmission 
succeeded on the second or third attempt. 

 

Scenario 3 – Mesh 

Expected Results: 

S1 and S2 will take turns transmitting packets to R1 and R2.  

Actual Results: 

S1 and S2 indeed took turns sending packets to R1 and R2.   

Because in this case, S1 and S2 can detect when the other is 
transmitting, carries sense is sufficient to prevent collisions.  Initial 
random back-off ensures with high probability that one of the 
senders will start first.  Once that happens, the other sender waits 
until the first sender is finished.  At this point, the waiting sender 
will have a shorter timeout (guaranteed by fair timeouts discussed 
before) and will transmit next, ensuring fairness.  

 

 

IX. Conclusion 
We completed high level goals established for Phases 1-3 of the project.  
 

Goal Phase Status Notes 
Basic Communication 1 Completed Point to point communication 
Reliability 1 Completed Retransmissions, Stop & Wait 
Robust Communication 2 Completed Summing FFTs, High Frequencies 
Ad Hoc Routing 2 Completed Variant of Source Routing 
Resource Control 3 Completed Carrier Sense and Random Exponential Back-off 
Efficiency/Fairness 3 Completed High Data Rates / Fair Back-off 

Table 1: Project Status 

 


